Ledger是总账簿的意思,也就是blockchain中存储交易记录的部分。其代码包含如下,这块代码量大,可能分析时间会很长,希望读者耐心等待。
先看下Blockchain在内存中保存的基本信息,Blockchain中的操作不是线程安全的
type blockchain struct {
size uint64 //块大小
previousBlockHash []byte //上一个块的哈希
indexer blockchainIndexer //块索引
lastProcessedBlock *lastProcessedBlock //最后处理的块
}
最后处理的块的结构
type lastProcessedBlock struct { block *protos.Block blockNumber uint64 块数 blockHash []byte 块哈希值 }
newBlockchain()用于创建一个区块
func newBlockchain() (*blockchain, error) {
size, err := fetchBlockchainSizeFromDB()//从数据库中读取blockchain的大小
if err != nil {
return nil, err
}
blockchain := &blockchain{0, nil, nil, nil}
blockchain.size = size
if size > 0 {
previousBlock, err := fetchBlockFromDB(size - 1)
//如果为创世区块,则上一个块是创世区块的大小减一
if err != nil {
return nil, err
}
previousBlockHash, err := previousBlock.GetHash()
//获取前驱块的哈希
if err != nil {
return nil, err
}
blockchain.previousBlockHash = previousBlockHash
}
err = blockchain.startIndexer()
//开始创建索引
if err != nil {
return nil, err
}
return blockchain, nil
}
创建索引
func (blockchain *blockchain) startIndexer() (err error) {
if indexBlockDataSynchronously {
blockchain.indexer = newBlockchainIndexerSync()
//同步创建区块链索引
} else {
blockchain.indexer = newBlockchainIndexerAsync()
}
err = blockchain.indexer.start(blockchain)
return
}
getLastBlock创建最后区块
func (blockchain *blockchain) getLastBlock() (*protos.Block, error) {
if blockchain.size == 0 {
return nil, nil
}
return blockchain.getBlock(blockchain.size - 1)
}
getSize用于返回块大小
func (blockchain *blockchain) getSize() uint64 {
return blockchain.size
}
在blockchain中通过任意高度获取块
func (blockchain *blockchain) getBlock(blockNumber uint64) (*protos.Block, error) { return fetchBlockFromDB(blockNumber) }
通过块的哈希获取块
func (blockchain *blockchain) getBlockByHash(blockHash []byte) (*protos.Block, error) {
blockNumber, err := blockchain.indexer.fetchBlockNumberByBlockHash(blockHash)
if err != nil {
return nil, err
}
return blockchain.getBlock(blockNumber)
}
通过UUID获取交易记录
func (blockchain *blockchain) getTransactionByUUID(txUUID string) (*protos.Transaction, error) {
blockNumber, txIndex, err := blockchain.indexer.fetchTransactionIndexByUUID(txUUID)
if err != nil {
return nil, err
}
block, err := blockchain.getBlock(blockNumber)
if err != nil {
return nil, err
}
transaction := block.GetTransactions()[txIndex]
return transaction, nil
}
通过有块号标识的块获取所有的交易
func (blockchain *blockchain) getTransactions(blockNumber uint64) ([]*protos.Transaction, error) {
block, err := blockchain.getBlock(blockNumber)
if err != nil {
return nil, err
}
return block.GetTransactions(), nil
}
通过块的哈希获取所有的交易
func (blockchain *blockchain) getTransactionsByBlockHash(blockHash []byte) ([]*protos.Transaction, error) {
block, err := blockchain.getBlockByHash(blockHash)
if err != nil {
return nil, err
}
return block.GetTransactions(), nil
}
通过数块和确定块内索引获取交易
func (blockchain *blockchain) getTransaction(blockNumber uint64, txIndex uint64) (*protos.Transaction, error) {
block, err := blockchain.getBlock(blockNumber)
if err != nil {
return nil, err
}
return block.GetTransactions()[txIndex], nil
}
通过块内块的哈希和标识索引获取交易
func (blockchain *blockchain) getTransactionByBlockHash(blockHash []byte, txIndex uint64) (*protos.Transaction, error) {
block, err := blockchain.getBlockByHash(blockHash)
if err != nil {
return nil, err
}
return block.GetTransactions()[txIndex], nil
}
获取区块链的信息
func (blockchain *blockchain) getBlockchainInfo() (*protos.BlockchainInfo, error) {
if blockchain.getSize() == 0 {
return &protos.BlockchainInfo{Height: 0}, nil
}
lastBlock, err := blockchain.getLastBlock()
if err != nil {
return nil, err
}
info := &protos.BlockchainInfo{
Height: blockchain.getSize(),
CurrentBlockHash: blockchain.previousBlockHash,
PreviousBlockHash: lastBlock.PreviousBlockHash}
return info, nil
}
创建块
func (blockchain *blockchain) buildBlock(block *protos.Block, stateHash []byte) *protos.Block {
block.SetPreviousBlockHash(blockchain.previousBlockHash)
block.StateHash = stateHash
return block
}
对于新块添加持久性的更改
func (blockchain *blockchain) addPersistenceChangesForNewBlock(ctx context.Context,
block *protos.Block, stateHash []byte, writeBatch *gorocksdb.WriteBatch) (uint64, error) {
block = blockchain.buildBlock(block, stateHash)
if block.NonHashData == nil {
block.NonHashData = &protos.NonHashData{LocalLedgerCommitTimestamp: util.CreateUtcTimestamp()}
} else {
block.NonHashData.LocalLedgerCommitTimestamp = util.CreateUtcTimestamp()
}
blockNumber := blockchain.size
blockHash, err := block.GetHash()
if err != nil {
return 0, err
}
blockBytes, blockBytesErr := block.Bytes()
if blockBytesErr != nil {
return 0, blockBytesErr
}
writeBatch.PutCF(db.GetDBHandle().BlockchainCF, encodeBlockNumberDBKey(blockNumber), blockBytes)
writeBatch.PutCF(db.GetDBHandle().BlockchainCF, blockCountKey, encodeUint64(blockNumber+1))
if blockchain.indexer.isSynchronous() {
blockchain.indexer.createIndexesSync(block, blockNumber, blockHash, writeBatch)
}
blockchain.lastProcessedBlock = &lastProcessedBlock{block, blockNumber, blockHash}
return blockNumber, nil
}
块持久状态
func (blockchain *blockchain) blockPersistenceStatus(success bool) {
if success {
blockchain.size++
blockchain.previousBlockHash = blockchain.lastProcessedBlock.blockHash
if !blockchain.indexer.isSynchronous() {
blockchain.indexer.createIndexesAsync(blockchain.lastProcessedBlock.block,
blockchain.lastProcessedBlock.blockNumber, blockchain.lastProcessedBlock.blockHash)
}
}
blockchain.lastProcessedBlock = nil
}
持久化原始块
func (blockchain *blockchain) persistRawBlock(block *protos.Block, blockNumber uint64) error {
blockBytes, blockBytesErr := block.Bytes()
if blockBytesErr != nil {
return blockBytesErr
}
writeBatch := gorocksdb.NewWriteBatch()
defer writeBatch.Destroy()
writeBatch.PutCF(db.GetDBHandle().BlockchainCF, encodeBlockNumberDBKey(blockNumber), blockBytes)
// 它需要检查,因为我们在这样的情况下块/状态同步支持乱序块。其真正意义区块链的高度,而不是规模。
if blockchain.getSize() < blockNumber+1 {
sizeBytes := encodeUint64(blockNumber + 1)
writeBatch.PutCF(db.GetDBHandle().BlockchainCF, blockCountKey, sizeBytes)
blockchain.size = blockNumber + 1
}
blockHash, err := block.GetHash()
if err != nil {
return err
}
if blockchain.indexer.isSynchronous() {
blockchain.indexer.createIndexesSync(block, blockNumber, blockHash, writeBatch)
}
opt := gorocksdb.NewDefaultWriteOptions()
defer opt.Destroy()
err = db.GetDBHandle().DB.Write(opt, writeBatch)
if err != nil {
return err
}
return nil
}
从数据库中获取块
func fetchBlockFromDB(blockNumber uint64) (*protos.Block, error) {
blockBytes, err := db.GetDBHandle().GetFromBlockchainCF(encodeBlockNumberDBKey(blockNumber))
if err != nil {
return nil, err
}
if blockBytes == nil {
return nil, nil
}
return protos.UnmarshallBlock(blockBytes)
}
从数据库中获取交易记录
func fetchTransactionFromDB(blockNum uint64, txIndex uint64) (*protos.Transaction, error) {
block, err := fetchBlockFromDB(blockNum)
if err != nil {
return nil, err
}
return block.GetTransactions()[txIndex], nil
}
从数据库中获取区块链的大小
func fetchBlockchainSizeFromDB() (uint64, error) {
bytes, err := db.GetDBHandle().GetFromBlockchainCF(blockCountKey)
if err != nil {
return 0, err
}
if bytes == nil {
return 0, nil
}
return decodeToUint64(bytes), nil
}
从快照中获取区块链大小
func fetchBlockchainSizeFromSnapshot(snapshot *gorocksdb.Snapshot) (uint64, error) {
blockNumberBytes, err := db.GetDBHandle().GetFromBlockchainCFSnapshot(snapshot, blockCountKey)
if err != nil {
return 0, err
}
var blockNumber uint64
if blockNumberBytes != nil {
blockNumber = decodeToUint64(blockNumberBytes)
}
return blockNumber, nil
}
将区块链的信息以字符串形式输出
func (blockchain *blockchain) String() string {
var buffer bytes.Buffer
size := blockchain.getSize()
for i := uint64(0); i < size; i++ {
block, blockErr := blockchain.getBlock(i)
if blockErr != nil {
return ""
}
buffer.WriteString("\n----------<block #")
buffer.WriteString(strconv.FormatUint(i, 10))
buffer.WriteString(">----------\n")
buffer.WriteString(block.String())
buffer.WriteString("\n----------<\\block #")
buffer.WriteString(strconv.FormatUint(i, 10))
buffer.WriteString(">----------\n")
}
return buffer.String()
}
blockchainIndexer定义了以下几个接口
type blockchainIndexer interface {
//同步标识
isSynchronous() bool
//开始创建
start(blockchain *blockchain) error
//同步创建索引
createIndexesSync(block *protos.Block, blockNumber uint64, blockHash []byte, writeBatch *gorocksdb.WriteBatch) error
//异步创建索引
createIndexesAsync(block *protos.Block, blockNumber uint64, blockHash []byte) error
//通过块哈希获取块号
fetchBlockNumberByBlockHash(blockHash []byte) (uint64, error)
//通过UUID获取块号
fetchTransactionIndexByUUID(txUUID string) (uint64, uint64, error)
//停止创建
stop()
}
持久化并且检索索引数据
func addIndexDataForPersistence(block *protos.Block, blockNumber uint64, blockHash []byte, writeBatch *gorocksdb.WriteBatch) error {
openchainDB := db.GetDBHandle()
cf := openchainDB.IndexesCF
// 块号映射成块哈希值
indexLogger.Debug("Indexing block number [%d] by hash = [%x]", blockNumber, blockHash)
writeBatch.PutCF(cf, encodeBlockHashKey(blockHash), encodeBlockNumber(blockNumber))
addressToTxIndexesMap := make(map[string][]uint64)
addressToChaincodeIDsMap := make(map[string][]*protos.ChaincodeID)
transactions := block.GetTransactions()
for txIndex, tx := range transactions {
// 添加TXT UUID - >(块号,索引中块)
writeBatch.PutCF(cf, encodeTxUUIDKey(tx.Uuid), encodeBlockNumTxIndex(blockNumber, uint64(txIndex)))
txExecutingAddress := getTxExecutingAddress(tx)
addressToTxIndexesMap[txExecutingAddress] = append(addressToTxIndexesMap[txExecutingAddress], uint64(txIndex))
switch tx.Type {
case protos.Transaction_CHAINCODE_NEW, protos.Transaction_CHAINCODE_UPDATE:
authroizedAddresses, chaincodeID := getAuthorisedAddresses(tx)
for _, authroizedAddress := range authroizedAddresses {
addressToChaincodeIDsMap[authroizedAddress] = append(addressToChaincodeIDsMap[authroizedAddress], chaincodeID)
}
}
}
for address, txsIndexes := range addressToTxIndexesMap {
writeBatch.PutCF(cf, encodeAddressBlockNumCompositeKey(address, blockNumber), encodeListTxIndexes(txsIndexes))
}
return nil
}
获得授权地址
func getAuthorisedAddresses(tx *protos.Transaction) ([]string, *protos.ChaincodeID) {
// 从chaincode的部署TX中获取取地址
// 这个方法也会返回错误
data := tx.ChaincodeID
cID := &protos.ChaincodeID{}
err := proto.Unmarshal(data, cID)
if err != nil {
return nil, nil
}
return []string{"address1", "address2"}, cID
}
编码/解码数据库键/值函数,索引数据编码/解码块数
func encodeBlockNumber(blockNumber uint64) []byte {
return proto.EncodeVarint(blockNumber)
}
func decodeBlockNumber(blockNumberBytes []byte) (blockNumber uint64) {
blockNumber, _ = proto.DecodeVarint(blockNumberBytes)
return
}
对 块号的Tx索引进行编码/解码
func encodeBlockNumTxIndex(blockNumber uint64, txIndexInBlock uint64) []byte {
b := proto.NewBuffer([]byte{})
b.EncodeVarint(blockNumber)
b.EncodeVarint(txIndexInBlock)
return b.Bytes()
}
func decodeBlockNumTxIndex(bytes []byte) (blockNum uint64, txIndex uint64, err error) {
b := proto.NewBuffer(bytes)
blockNum, err = b.DecodeVarint()
if err != nil {
return
}
txIndex, err = b.DecodeVarint()
if err != nil {
return
}
return
}
对区块哈希的键值进行编码
func encodeBlockHashKey(blockHash []byte) []byte {
return prependKeyPrefix(prefixBlockHashKey, blockHash)
}
对TxUUID的键值进行编码
func encodeTxUUIDKey(txUUID string) []byte {
return prependKeyPrefix(prefixTxUUIDKey, []byte(txUUID))
}
对区块号地址的复合键值进行编码
func encodeAddressBlockNumCompositeKey(address string, blockNumber uint64) []byte { b := proto.NewBuffer([]byte{prefixAddressBlockNumCompositeKey}) b.EncodeRawBytes([]byte(address)) b.EncodeVarint(blockNumber) return b.Bytes() }
对Tx的索引清单进行编码
func encodeListTxIndexes(listTx []uint64) []byte { b := proto.NewBuffer([]byte{}) for i := range listTx { b.EncodeVarint(listTx[i]) }
return b.Bytes()
}
对chaincode的ID进行编码
func encodeChaincodeID(c *protos.ChaincodeID) []byte {
// 序列化chaincode ID
return []byte{}
}
前置键值前缀
func prependKeyPrefix(prefix byte, key []byte) []byte {
modifiedKey := []byte{}
modifiedKey = append(modifiedKey, prefix)
modifiedKey = append(modifiedKey, key...)
return modifiedKey
}
整个代码主要执行对blockchain的异步创建索引
type blockchainIndexerAsync struct {
blockchain *blockchain
//从块链转移块索引的通道
blockChan chan blockWrapper
indexerState *blockchainIndexerState
}
创建索引条目并逐步添加到数据库,用于创建各种属性的索引
func (indexer *blockchainIndexerAsync) createIndexesInternal(block *protos.Block, blockNumber uint64, blockHash []byte) error { openchainDB := db.GetDBHandle() writeBatch := gorocksdb.NewWriteBatch() defer writeBatch.Destroy() addIndexDataForPersistence(block, blockNumber, blockHash, writeBatch) writeBatch.PutCF(openchainDB.IndexesCF, lastIndexedBlockKey, encodeBlockNumber(blockNumber)) opt := gorocksdb.NewDefaultWriteOptions() defer opt.Destroy() err := openchainDB.DB.Write(opt, writeBatch) if err != nil { return err }
indexer.indexerState.blockIndexed(blockNumber)
return nil
}
待定块的索引
func (indexer *blockchainIndexerAsync) indexPendingBlocks() error {
blockchain := indexer.blockchain
if blockchain.getSize() == 0 {
// 链至今为空
return nil
}
lastCommittedBlockNum := blockchain.getSize() - 1
lastIndexedBlockNum := indexer.indexerState.getLastIndexedBlockNumber()
if lastCommittedBlockNum == lastIndexedBlockNum {
//所有块索引的提交
return nil
}
for ; lastIndexedBlockNum < lastCommittedBlockNum; lastIndexedBlockNum++ {
blockNumToIndex := lastIndexedBlockNum + 1
blockToIndex, errBlockFetch := blockchain.getBlock(blockNumToIndex)
if errBlockFetch != nil {
return errBlockFetch
}
blockHash, errBlockHash := blockToIndex.GetHash()
if errBlockHash != nil {
return errBlockHash
}
indexer.createIndexesInternal(blockToIndex, blockNumToIndex, blockHash)
}
return nil
}
块索引
func (indexerState *blockchainIndexerState) blockIndexed(blockNumber uint64) {
indexerState.newBlockIndexed.L.Lock()
defer indexerState.newBlockIndexed.L.Unlock()
indexerState.lastBlockIndexed = blockNumber
indexerState.zerothBlockIndexed = true
indexerState.newBlockIndexed.Broadcast()
}
等待最后一个块的创建
func (indexerState *blockchainIndexerState) waitForLastCommittedBlock() (err error) {
chain := indexerState.indexer.blockchain
if err != nil || chain.getSize() == 0 {
return
}
lastBlockCommitted := chain.getSize() - 1
indexerState.newBlockIndexed.L.Lock()
defer indexerState.newBlockIndexed.L.Unlock()
if !indexerState.zerothBlockIndexed {
indexLogger.Debug(
"Waiting for zeroth block to be indexed. lastBlockCommitted=[%d] and lastBlockIndexed=[%d]",
lastBlockCommitted, indexerState.lastBlockIndexed)
indexerState.newBlockIndexed.Wait()
}
for indexerState.lastBlockIndexed < lastBlockCommitted {
indexLogger.Debug(
"Waiting for index to catch up with block chain. lastBlockCommitted=[%d] and lastBlockIndexed=[%d]",
lastBlockCommitted, indexerState.lastBlockIndexed)
indexerState.newBlockIndexed.Wait()
}
return
}
获取从数据库中得到上一个块号的块索引
func fetchLastIndexedBlockNumFromDB() (zerothBlockIndexed bool, lastIndexedBlockNum uint64, err error) {
lastIndexedBlockNumberBytes, err := db.GetDBHandle().GetFromIndexesCF(lastIndexedBlockKey)
if err != nil {
return
}
if lastIndexedBlockNumberBytes == nil {
return
}
lastIndexedBlockNum = decodeBlockNumber(lastIndexedBlockNumberBytes)
zerothBlockIndexed = true
return
}
先看下ledger的结构
type Ledger struct {
blockchain *blockchain //区块链
state *state.State //状态
currentID interface{} //当前ID
}
给出”单个“ledger的引用
func GetLedger() (*Ledger, error) {
once.Do(func() {
ledger, ledgerError = newLedger()
})
return ledger, ledgerError
}
开始批量发出
func (ledger *Ledger) BeginTxBatch(id interface{}) error {
err := ledger.checkValidIDBegin()
if err != nil {
return err
}
ledger.currentID = id
return nil
}
返回将具有相同块的哈希,如果ledger.CommitTxBatch使用相同的参数则提交到数据库。如果该状态是由一个事务这两个调用之间修改,散列将不同。该块预览不包括非散列数据,如本地时间戳。
func (ledger *Ledger) GetTXBatchPreviewBlock(id interface{},
transactions []*protos.Transaction, metadata []byte) (*protos.Block, error) {
err := ledger.checkValidIDCommitORRollback(id)
if err != nil {
return nil, err
}
stateHash, err := ledger.state.GetHash()
if err != nil {
return nil, err
}
return ledger.blockchain.buildBlock(protos.NewBlock(transactions, metadata), stateHash), nil
}
CommitTxBatch被调用时,当前事务需要分批次提交,该函数成功返回了交易的细节和状态变化(可能在这个交易批量的执行过程中发生)一直致力于持久化存储
func (ledger *Ledger) CommitTxBatch(id interface{}, transactions []*protos.Transaction, transactionResults []*protos.TransactionResult, metadata []byte) error {
err := ledger.checkValidIDCommitORRollback(id)
if err != nil {
return err
}
stateHash, err := ledger.state.GetHash()
if err != nil {
ledger.resetForNextTxGroup(false)
ledger.blockchain.blockPersistenceStatus(false)
return err
}
writeBatch := gorocksdb.NewWriteBatch()
defer writeBatch.Destroy()
block := protos.NewBlock(transactions, metadata)
block.NonHashData = &protos.NonHashData{TransactionResults: transactionResults}
newBlockNumber, err := ledger.blockchain.addPersistenceChangesForNewBlock(context.TODO(), block, stateHash, writeBatch)
if err != nil {
ledger.resetForNextTxGroup(false)
ledger.blockchain.blockPersistenceStatus(false)
return err
}
ledger.state.AddChangesForPersistence(newBlockNumber, writeBatch)
opt := gorocksdb.NewDefaultWriteOptions()
defer opt.Destroy()
dbErr := db.GetDBHandle().DB.Write(opt, writeBatch)
if dbErr != nil {
ledger.resetForNextTxGroup(false)
ledger.blockchain.blockPersistenceStatus(false)
return dbErr
}
ledger.resetForNextTxGroup(true)
ledger.blockchain.blockPersistenceStatus(true)
sendProducerBlockEvent(block)
return nil
}
批处理回滚时放弃当前事务批次执行过程中可能发生的所有状态变化
func (ledger *Ledger) RollbackTxBatch(id interface{}) error {
ledgerLogger.Debug("RollbackTxBatch for id = [%s]", id)
err := ledger.checkValidIDCommitORRollback(id)
if err != nil {
return err
}
ledger.resetForNextTxGroup(false)
return nil
}
标志着在持续一批新的交易开始
func (ledger *Ledger) TxBegin(txUUID string) { ledger.state.TxBegin(txUUID) }
标志着正在进行交易的完成。如果成功话设置为false,丢弃事务的状态变化
func (ledger *Ledger) TxFinished(txUUID string, txSuccessful bool) { ledger.state.TxFinish(txUUID, txSuccessful) }
计算哈希状态并考虑到当前事务批次执行过程中可能发生的状态变化
func (ledger *Ledger) GetTempStateHash() ([]byte, error) { return ledger.state.GetHash() }
除状态散列(如在方法GetTempStateHash定义),
此方法返回一个映射[TX的txUuid - > cryptoHash(stateChange MadeBySIx),只有TX成功,才会出现在该映射中
func (ledger *Ledger) GetTempStateHashWithTxDeltaStateHashes() ([]byte, map[string][]byte, error) {
stateHash, err := ledger.state.GetHash()
return stateHash, ledger.state.GetTxStateDeltaHash(), err
}
获取chaincode的id和键值。如果提交为false,它首先会在内存中查看。如果丢失的话,将从数据库中获取。如果提交为true,则仅仅只能在数据库中获取。
func (ledger *Ledger) GetState(chaincodeID string, key string, committed bool) ([]byte, error) {
return ledger.state.Get(chaincodeID, key, committed)
}
返回一个迭代器来获取所有startKey和endKey之间的键(和值)(假设键的词汇顺序)为chaincodeID。如果提交为true,则从数据库检索的键值是唯一。如果提交为false,从数据库被mergerd后的结果与在存储器中的结果(优先考虑在内存中的数据)在返回的迭代的键值是不同的
guaranteed to be in any specific order
func (ledger *Ledger) GetStateRangeScanIterator(chaincodeID string, startKey string, endKey string, committed bool) (statemgmt.RangeScanIterator, error) {
return ledger.state.GetRangeScanIterator(chaincodeID, startKey, endKey, committed)
}
返回当前块点对点全局状态。 这个是在从一个端到另一个端转化中的状态时使用。必须调用状态Snapshot.Release()方法一旦你与快照是以释放资源完成的。
func (ledger *Ledger) GetStateSnapshot() (*state.StateSnapshot, error) {
dbSnapshot := db.GetDBHandle().GetSnapshot()
blockHeight, err := fetchBlockchainSizeFromSnapshot(dbSnapshot)
if err != nil {
dbSnapshot.Release()
return nil, err
}
if 0 == blockHeight {
dbSnapshot.Release()
return nil, fmt.Errorf("Blockchain has no blocks, cannot determine block number")
}
return ledger.state.GetSnapshot(blockHeight-1, dbSnapshot)
}
如果可用,则返回指定块的状态增量。
func (ledger *Ledger) GetStateDelta(blockNumber uint64) (*statemgmt.StateDelta, error) {
if blockNumber >= ledger.GetBlockchainSize() {
return nil, ErrOutOfBounds
}
return ledger.state.FetchStateDeltaFromDB(blockNumber)
}
即适用于一个当前的状态状态增量。它只在内存改变。必须调用ledger.CommitStateDelta持久化到数据库。这应该只被用来作为状态同步的一部分。状态增量可以从另一对等虽然Ledger.GetStateDelta函数检索或者与来自Ledger.GetStateshot()获取密钥创建的状态增量。举一个例子,在ledger_test.go定义的TestSetRawState。请注意,没有在此功能上检查它是否被调用,以确保增量是在正确的顺序中使用。例如,如果你目前正处于块8,并调用Ledger.GetStateDelta(10)的功能检索增量,您现在会是在一个糟糕的状态,因为你没有块9.申请增量这是可能的回滚状态向前或向后使用stateDelta.RollBackwards。默认情况下,块3检索的增量可以被用来从状态向前回滚在块2到状态在块3.如果
stateDelta.RollBackwards =false,增量检索块3可用于向后滚动块3状态和块2的状态。
func (ledger *Ledger) ApplyStateDelta(id interface{}, delta *statemgmt.StateDelta) error {
err := ledger.checkValidIDBegin()
if err != nil {
return err
}
ledger.currentID = id
ledger.state.ApplyStateDelta(delta)
return nil
}
将提交ledger.ApplyState状态增量并传递到到数据库
func (ledger *Ledger) CommitStateDelta(id interface{}) error {
err := ledger.checkValidIDCommitORRollback(id)
if err != nil {
return err
}
defer ledger.resetForNextTxGroup(true)
return ledger.state.CommitStateDelta()
}
放弃到ledger.ApplyStateDelta状态增量
func (ledger *Ledger) RollbackStateDelta(id interface{}) error {
err := ledger.checkValidIDCommitORRollback(id)
if err != nil {
return err
}
ledger.resetForNextTxGroup(false)
return nil
}
将验证blockchain的integrety。完成这一步
通过确保存储在每个块中的前一个块的哈希链中的前块的实际散列相匹配。返回值是包含不匹配的前一个块的散列块的块号。例如,如果验证链(0,99)称为与prevous哈希值存储在块8中,32和42不相匹配各自前块42的实际的哈希值将是从该函数的返回值。 highBlock在链中高级验证。 如果你要验证的整个链条中,使用ledger.GetBlockchainsize() - 1。低块是在链中被低级验证。如果您想验证整个链条,为创世区块使用0。
func (ledger *Ledger) VerifyChain(highBlock, lowBlock uint64) (uint64, error) {
if highBlock >= ledger.GetBlockchainSize() {
return highBlock, ErrOutOfBounds
}
if highBlock <= lowBlock {
return lowBlock, ErrOutOfBounds
}
for i := highBlock; i > lowBlock; i-- {
currentBlock, err := ledger.GetBlockByNumber(i)
if err != nil {
return i, fmt.Errorf("Error fetching block %d.", i)
}
if currentBlock == nil {
return i, fmt.Errorf("Block %d is nil.", i)
}
previousBlock, err := ledger.GetBlockByNumber(i - 1)
if err != nil {
return i - 1, fmt.Errorf("Error fetching block %d.", i)
}
if previousBlock == nil {
return i - 1, fmt.Errorf("Block %d is nil.", i-1)
}
previousBlockHash, err := previousBlock.GetHash()
if err != nil {
return i - 1, fmt.Errorf("Error calculating block hash for block %d.", i-1)
}
if bytes.Compare(previousBlockHash, currentBlock.PreviousBlockHash) != 0 {
return i, nil
}
}
return 0, nil
}
func sendProducerBlockEvent(block *protos.Block) {
// 从部署删除交易的有效载荷。这样做是为了创建块
//这些类型的交易使事件更轻巧,有效载荷有可能非常大
blockTransactions := block.GetTransactions()
for _, transaction := range blockTransactions {
if transaction.Type == protos.Transaction_CHAINCODE_NEW {
deploymentSpec := &protos.ChaincodeDeploymentSpec{}
err := proto.Unmarshal(transaction.Payload, deploymentSpec)
if err != nil {
ledgerLogger.Error(fmt.Sprintf("Error unmarshalling deployment transaction for block event: %s", err))
continue
}
deploymentSpec.CodePackage = nil
deploymentSpecBytes, err := proto.Marshal(deploymentSpec)
if err != nil {
ledgerLogger.Error(fmt.Sprintf("Error marshalling deployment transaction for block event: %s", err))
continue
}
transaction.Payload = deploymentSpecBytes
}
}
producer.Send(producer.CreateBlockEvent(block))
}
类似于chaincode,调用go-logging中logging库的MustGetLogger函数对genesis package进行记录
var genesisLogger = logging.MustGetLogger("genesis")
MakeGenesis基于在openchain.yaml中配置创建创世区块,并把它添加到blockchain。
func MakeGenesis() error {
once.Do(func() {
ledger, err := ledger.GetLedger()
if err != nil {
makeGenesisError = err
return
}
if ledger.GetBlockchainSize() > 0 {
// 获取blockchain的大小,如果大于0代表创世区块已经存在
return
}
genesisLogger.Info("Creating genesis block.")
ledger.BeginTxBatch(0)
var genesisTransactions []*protos.Transaction
//我们现在禁用在有效期内部署,甚至不应该允许它在配置中启用,将其设置为false
allowDeployValidityPeriod := false
if(deploySystemChaincodeEnabled() && allowDeployValidityPeriod){
vpTransaction, deployErr := deployUpdateValidityPeriodChaincode()
if deployErr != nil {
genesisLogger.Error("Error deploying validity period system chaincode for genesis block.", deployErr)
makeGenesisError = deployErr
return
}
genesisTransactions = append(genesisTransactions, vpTransaction)
}
genesis := viper.GetStringMap("ledger.blockchain.genesisBlock")
if genesis == nil {
genesisLogger.Info("No genesis block chaincodes defined.")
} else {
chaincodes, chaincodesOK := genesis["chaincode"].([]interface{})
if !chaincodesOK {
genesisLogger.Info("No genesis block chaincodes defined.")
ledger.CommitTxBatch(0, genesisTransactions, nil, nil)
return
}
genesisLogger.Debug("Genesis chaincodes are %s", chaincodes)
for i := 0; i < len(chaincodes); i++ {
genesisLogger.Debug("Chaincode %d is %s", i, chaincodes[i])
chaincodeMap, chaincodeMapOK := chaincodes[i].(map[interface{}]interface{})
if !chaincodeMapOK {
genesisLogger.Error("Invalid chaincode defined in genesis configuration:", chaincodes[i])
makeGenesisError = fmt.Errorf("Invalid chaincode defined in genesis configuration: %s", chaincodes[i])
return
}
path, pathOK := chaincodeMap["path"].(string)
if !pathOK {
genesisLogger.Error("Invalid chaincode URL defined in genesis configuration:", chaincodeMap["path"])
makeGenesisError = fmt.Errorf("Invalid chaincode URL defined in genesis configuration: %s", chaincodeMap["path"])
return
}
chaincodeType, chaincodeTypeOK := chaincodeMap["type"].(string)
if !chaincodeTypeOK {
genesisLogger.Error("Invalid chaincode type defined in genesis configuration:", chaincodeMap["type"])
makeGenesisError = fmt.Errorf("Invalid chaincode type defined in genesis configuration: %s", chaincodeMap["type"])
return
}
chaincodeID := &protos.ChaincodeID{Path: path, Name: ""}
genesisLogger.Debug("Genesis chaincodeID %s", chaincodeID)
genesisLogger.Debug("Genesis chaincode type %s", chaincodeType)
constructorMap, constructorMapOK := chaincodeMap["constructor"].(map[interface{}]interface{})
if !constructorMapOK {
genesisLogger.Error("Invalid chaincode constructor defined in genesis configuration:", chaincodeMap["constructor"])
makeGenesisError = fmt.Errorf("Invalid chaincode constructor defined in genesis configuration: %s", chaincodeMap["constructor"])
return
}
var spec protos.ChaincodeSpec
if constructorMap == nil {
genesisLogger.Debug("Genesis chaincode has no constructor.")
spec = protos.ChaincodeSpec{Type: protos.ChaincodeSpec_Type(protos.ChaincodeSpec_Type_value[chaincodeType]), ChaincodeID: chaincodeID}
} else {
ctorFunc, ctorFuncOK := constructorMap["func"].(string)
if !ctorFuncOK {
genesisLogger.Error("Invalid chaincode constructor function defined in genesis configuration:", constructorMap["func"])
makeGenesisError = fmt.Errorf("Invalid chaincode constructor function args defined in genesis configuration: %s", constructorMap["func"])
return
}
ctorArgs, ctorArgsOK := constructorMap["args"].([]interface{})
if !ctorArgsOK {
genesisLogger.Error("Invalid chaincode constructor args defined in genesis configuration:", constructorMap["args"])
makeGenesisError = fmt.Errorf("Invalid chaincode constructor args defined in genesis configuration: %s", constructorMap["args"])
return
}
genesisLogger.Debug("Genesis chaincode constructor func %s", ctorFunc)
genesisLogger.Debug("Genesis chaincode constructor args %s", ctorArgs)
var ctorArgsStringArray []string
for j := 0; j < len(ctorArgs); j++ {
ctorArgsStringArray = append(ctorArgsStringArray, ctorArgs[j].(string))
}
spec = protos.ChaincodeSpec{Type: protos.ChaincodeSpec_Type(protos.ChaincodeSpec_Type_value[chaincodeType]), ChaincodeID: chaincodeID, CtorMsg: &protos.ChaincodeInput{Function: ctorFunc, Args: ctorArgsStringArray}}
}
transaction, _, deployErr := DeployLocal(context.Background(), &spec)
if deployErr != nil {
genesisLogger.Error("Error deploying chaincode for genesis block.", deployErr)
makeGenesisError = deployErr
return
}
genesisTransactions = append(genesisTransactions, transaction)
}//for
}//else
genesisLogger.Info("Adding %d system chaincodes to the genesis block.", len(genesisTransactions))
ledger.CommitTxBatch(0, genesisTransactions, nil, nil)
})
return makeGenesisError
}
构建一个指定的chaincode码
func BuildLocal(context context.Context, spec *protos.ChaincodeSpec) (*protos.ChaincodeDeploymentSpec, error) {
genesisLogger.Debug("Received build request for chaincode spec: %v", spec)
mode := viper.GetString("chaincode.chaincoderunmode")
var codePackageBytes []byte
if mode != chaincode.DevModeUserRunsChaincode {
if err := openchain.CheckSpec(spec); err != nil {
genesisLogger.Debug("check spec failed: %s", err)
return nil, err
}
// 规范构建
var err error
codePackageBytes, err = container.GetChaincodePackageBytes(spec)
if err != nil {
genesisLogger.Error(fmt.Sprintf("Error getting VM: %s", err))
return nil, err
}
}
chaincodeDeploymentSpec := &protos.ChaincodeDeploymentSpec{ChaincodeSpec: spec, CodePackage: codePackageBytes}
return chaincodeDeploymentSpec, nil
}
部署供应链代码的映像到本地端
func DeployLocal(ctx context.Context, spec *protos.ChaincodeSpec) (*protos.Transaction, []byte, error) {
// 首先建立并得到部署规范
chaincodeDeploymentSpec, err := BuildLocal(ctx, spec)
if err != nil {
genesisLogger.Error(fmt.Sprintf("Error deploying chaincode spec: %v\n\n error: %s", spec, err))
return nil, nil, err
}
transaction, err := protos.NewChaincodeDeployTransaction(chaincodeDeploymentSpec, chaincodeDeploymentSpec.ChaincodeSpec.ChaincodeID.Name)
if err != nil {
return nil, nil, fmt.Errorf("Error deploying chaincode: %s ", err)
}
//chaincode.NewChaincodeSupport(chaincode.DefaultChain, peer.GetPeerEndpoint, false, 120000)
// secHelper设置在ChaincodeSupport创建期间,因此我们不需要这一步
//ctx = context.WithValue(ctx, "security", secCxt)
result, err := chaincode.Execute(ctx, chaincode.GetChain(chaincode.DefaultChain), transaction)
return transaction, result, err
}
设置是否部署系统chaincode
func deploySystemChaincodeEnabled() bool {
// 如果系统chaincode的部署配置文件中能够返回所配置的值
if viper.IsSet("ledger.blockchain.deploy-system-chaincode") {
return viper.GetBool("ledger.blockchain.deploy-system-chaincode")
}
// 如果没有指定配置能够启用,系统chaincode将采用默认情况部署
return true
}
部署更新chaincode的有效期
func deployUpdateValidityPeriodChaincode() (*protos.Transaction, error) {
//它应该是可配置的,不采取硬编码
vpChaincodePath := "github.com/openblockchain/obc-peer/openchain/system_chaincode/validity_period_update"
vpFunction := "init"
//这应该是负责有效期更新的组件的登录凭证。
//该组件需要在系统中注册,以便能够调用更新chaincode的有效期
vpToken := "system_chaincode_invoker"
var vpCtorArgsStringArray []string
validityPeriodSpec := &protos.ChaincodeSpec{Type: protos.ChaincodeSpec_GOLANG,
ChaincodeID: &protos.ChaincodeID{Path: vpChaincodePath,
Name: "",
},
CtorMsg: &protos.ChaincodeInput{Function: vpFunction,
Args: vpCtorArgsStringArray,
},
}
validityPeriodSpec.SecureContext = string(vpToken)
vpTransaction, _, deployErr := DeployLocal(context.Background(), validityPeriodSpec)
if deployErr != nil {
genesisLogger.Error("Error deploying validity period chaincode for genesis block.", deployErr)
makeGenesisError = deployErr
return nil, deployErr
}
return vpTransaction, nil
}
返回一个字节表示要的int64数使得起始字节全零比特,以减少阵列的长度被修整,用于保存在一个缺省字节对比的顺序,第一个字节包含剩余的第一字节的bytes。存在的数量也允许使用返回的字节作为其它较大字节阵列的一部分,如以数据库复合键表示
func EncodeOrderPreservingVarUint64(number uint64) []byte {
bytes := make([]byte, 8)
binary.BigEndian.PutUint64(bytes, number)
startingIndex := 0
size := 0
for i, b := range bytes {
if b != 0x00 {
startingIndex = i
size = 8 - i
break
}
}
sizeBytes := proto.EncodeVarint(uint64(size))
if len(sizeBytes) > 1 {
panic(fmt.Errorf("[]sizeBytes should not be more than one byte because the max number it needs to hold is 8. size=%d", size))
}
encodedBytes := make([]byte, size+1)
encodedBytes[0] = sizeBytes[0]
copy(encodedBytes[1:], bytes[startingIndex:])
return encodedBytes
}
解码从由方法“EncodeOrderPreservingVarUint64’得到的字节数。
此外,返回在该过程中所消耗的字节数
func DecodeOrderPreservingVarUint64(bytes []byte) (uint64, int) {
s, _ := proto.DecodeVarint(bytes)
size := int(s)
decodedBytes := make([]byte, 8)
copy(decodedBytes[8-size:], bytes[1:size+1])
numBytesConsumed := size + 1
return binary.BigEndian.Uint64(decodedBytes), numBytesConsumed
}
这个方法假定数据节点都按键的增加顺序添加
func (c *bucketHashCalculator) addNextNode(dataNode *dataNode) {
chaincodeID, _ := dataNode.getKeyElements()
if chaincodeID != c.currentChaincodeID {
c.appendCurrentChaincodeData()
c.currentChaincodeID = chaincodeID
c.dataNodes = nil
}
c.dataNodes = append(c.dataNodes, dataNode)
}
计算加密哈希
func (c *bucketHashCalculator) computeCryptoHash() []byte {
if c.currentChaincodeID != "" {
c.appendCurrentChaincodeData()
c.currentChaincodeID = ""
c.dataNodes = nil
}
logger.Debug("Hashable content for bucket [%s]: length=%d, contentInStringForm=[%s]", c.bucketKey, len(c.hashingData), string(c.hashingData))
if util.IsNil(c.hashingData) {
return nil
}
return openchainUtil.ComputeCryptoHash(c.hashingData)
}
添加当前chaincode数据
func (c *bucketHashCalculator) appendCurrentChaincodeData() {
if c.currentChaincodeID == "" {
return
}
c.appendSizeAndData([]byte(c.currentChaincodeID))
c.appendSize(len(c.dataNodes))
for _, dataNode := range c.dataNodes {
_, key := dataNode.getKeyElements()
value := dataNode.getValue()
c.appendSizeAndData([]byte(key))
c.appendSizeAndData(value)
}
}
添加数据和容量
func (c *bucketHashCalculator) appendSizeAndData(b []byte) { c.appendSize(len(b)) c.hashingData = append(c.hashingData, b...) }
增加容量
func (c *bucketHashCalculator) appendSize(size int) {
c.hashingData = append(c.hashingData, proto.EncodeVarint(uint64(size))...)
}
bucket key的结构如下
type bucketKey struct {
level int //级别
bucketNumber int //bucket号
}
当level为0,bucketNumber为1时,构造bucket树根节点;
当level为bucketKey.level-1, bucketNumber为conf.computeParentBucketNumber(bucketKey.bucketNumber)
时构建的是父节点的bucketkey
func newBucketKey(level int, bucketNumber int) *bucketKey {
if level > conf.getLowestLevel() || level < 0 {
panic(fmt.Errorf("Invalid Level [%d] for bucket key. Level can be between 0 and [%d]", level, conf.lowestLevel))
//如果级别大于最低级别或者级别小于0,则输出当前级别以及最小级别
}
//如果bucket号小于1或者大于bucket级别对应的级别好,则返回bucketkey的级别和级别号
if bucketNumber < 1 || bucketNumber > conf.getNumBuckets(level) {
panic(fmt.Errorf("Invalid bucket number [%d]. Bucket nuber at level [%d] can be between 1 and [%d]", bucketNumber, level, conf.getNumBuckets(level)))
}
return &bucketKey{level, bucketNumber}
}
获取子节点的索引
func (bucketKey *bucketKey) getChildIndex(childKey *bucketKey) int {
bucketNumberOfFirstChild := ((bucketKey.bucketNumber - 1) * conf.getMaxGroupingAtEachLevel()) + 1
bucketNumberOfLastChild := bucketKey.bucketNumber * conf.getMaxGroupingAtEachLevel()
if childKey.bucketNumber < bucketNumberOfFirstChild || childKey.bucketNumber > bucketNumberOfLastChild {
panic(fmt.Errorf("[%#v] is not a valid child bucket of [%#v]", childKey, bucketKey))
}
return childKey.bucketNumber - bucketNumberOfFirstChild
}
bucketnode的结构如下
type bucketNode struct {
bucketKey *bucketKey
childrenCryptoHash [][]byte //子节点的加密哈希
childrenUpdated []bool //子节点更新
markedForDeletion bool //删除标记
}
重组bucketnode
func unmarshalBucketNode(bucketKey *bucketKey, serializedBytes []byte) *bucketNode {
bucketNode := newBucketNode(bucketKey)
buffer := proto.NewBuffer(serializedBytes)
for i := 0; i < conf.getMaxGroupingAtEachLevel(); i++ {
childCryptoHash, err := buffer.DecodeRawBytes(false)
if err != nil {
panic(fmt.Errorf("this error should not occur: %s", err))
}
if !util.IsNil(childCryptoHash) {
bucketNode.childrenCryptoHash[i] = childCryptoHash
}
}
return bucketNode
}
合并bucket节点
func (bucketNode *bucketNode) mergeBucketNode(anotherBucketNode *bucketNode) {
if !bucketNode.bucketKey.equals(anotherBucketNode.bucketKey) {
panic(fmt.Errorf("Nodes with different keys can not be merged. BaseKey=[%#v], MergeKey=[%#v]", bucketNode.bucketKey, anotherBucketNode.bucketKey))
}
for i, childCryptoHash := range anotherBucketNode.childrenCryptoHash {
if !bucketNode.childrenUpdated[i] && util.IsNil(bucketNode.childrenCryptoHash[i]) {
bucketNode.childrenCryptoHash[i] = childCryptoHash
}
}
}
包含的功能比较少,直接上代码
//创建bucket树增量
func newBucketTreeDelta() *bucketTreeDelta {
return &bucketTreeDelta{make(map[int]byBucketNumber)}
}
//获取或者创建Bucket节点
func (bucketTreeDelta *bucketTreeDelta) getOrCreateBucketNode(bucketKey *bucketKey) *bucketNode {
byBucketNumber := bucketTreeDelta.byLevel[bucketKey.level]
if byBucketNumber == nil {
byBucketNumber = make(map[int]*bucketNode)
bucketTreeDelta.byLevel[bucketKey.level] = byBucketNumber
}
bucketNode := byBucketNumber[bucketKey.bucketNumber]
if bucketNode == nil {
bucketNode = newBucketNode(bucketKey)
byBucketNumber[bucketKey.bucketNumber] = bucketNode
}
return bucketNode
}
//获取某一级别下的bucket节点
func (bucketTreeDelta *bucketTreeDelta) getBucketNodesAt(level int) []*bucketNode {
bucketNodes := []*bucketNode{}
byBucketNumber := bucketTreeDelta.byLevel[level]
if byBucketNumber == nil {
return nil
}
for _, bucketNode := range byBucketNumber {
bucketNodes = append(bucketNodes, bucketNode)
}
return bucketNodes
}
//获取根节点
func (bucketTreeDelta *bucketTreeDelta) getRootNode() *bucketNode {
bucketNodes := bucketTreeDelta.getBucketNodesAt(0)
if bucketNodes == nil || len(bucketNodes) == 0 {
panic("This method should be called after processing is completed (i.e., the root node has been created)")
}
return bucketNodes[0]
}
计算父节点的bucket数量
func (config *config) computeParentBucketNumber(bucketNumber int) int {
logger.Debug("Computing parent bucket number for bucketNumber [%d]", bucketNumber)
parentBucketNumber := bucketNumber / config.getMaxGroupingAtEachLevel()
if bucketNumber%config.getMaxGroupingAtEachLevel() != 0 {
parentBucketNumber++
}
return parentBucketNumber
}
//创建datakey
func newDataKey(chaincodeID string, key string) *dataKey {
logger.Debug("Enter - newDataKey. chaincodeID=[%s], key=[%s]", chaincodeID, key)
compositeKey := statemgmt.ConstructCompositeKey(chaincodeID, key)
bucketHash := conf.computeBucketHash(compositeKey)
// 添加一个,因为 - 我们开始启动bucket的数为1
bucketNumber := int(bucketHash)%conf.getNumBucketsAtLowestLevel() + 1
dataKey := &dataKey{newBucketKeyAtLowestLevel(bucketNumber), compositeKey}
logger.Debug("Exit - newDataKey=[%s]", dataKey)
return dataKey
}
//最小化DataKey可能的字节
func minimumPossibleDataKeyBytesFor(bucketKey *bucketKey) []byte {
min := encodeBucketNumber(bucketKey.bucketNumber)
min = append(min, byte(0))
return min
}
func minimumPossibleDataKeyBytes(bucketNumber int, chaincodeID string, key string) []byte {
b := encodeBucketNumber(bucketNumber)
b = append(b, statemgmt.ConstructCompositeKey(chaincodeID, key)...)
return b
}
创建datanode增量
func newDataNodesDelta(stateDelta *statemgmt.StateDelta) *dataNodesDelta {
dataNodesDelta := &dataNodesDelta{make(map[bucketKey]dataNodes)}
chaincodeIDs := stateDelta.GetUpdatedChaincodeIds(false)
for _, chaincodeID := range chaincodeIDs {
updates := stateDelta.GetUpdates(chaincodeID)
for key, updatedValue := range updates {
if stateDelta.RollBackwards {
dataNodesDelta.add(chaincodeID, key, updatedValue.GetPreviousValue())
} else {
dataNodesDelta.add(chaincodeID, key, updatedValue.GetValue())
}
}
}
for _, dataNodes := range dataNodesDelta.byBucket {
sort.Sort(dataNodes)
}
return dataNodesDelta
}
获取受到影响的buckets
func (dataNodesDelta *dataNodesDelta) getAffectedBuckets() []*bucketKey {
changedBuckets := []*bucketKey{}
for bucketKey := range dataNodesDelta.byBucket {
copyOfBucketKey := bucketKey.clone()
logger.Debug("Adding changed bucket [%s]", copyOfBucketKey)
changedBuckets = append(changedBuckets, copyOfBucketKey)
}
logger.Debug("Changed buckets are = [%s]", changedBuckets)
return changedBuckets
}
RangeScanIterator实现了 ‘statemgmt.RangeScanIterator’接口
type RangeScanIterator struct {
dbItr *gorocksdb.Iterator
chaincodeID string
startKey string
endKey string
currentBucketNumber int
currentKey string
currentValue []byte
done bool
}
这是其中接口实现的一些细节
func (itr *RangeScanIterator) Next() bool {
if itr.done {
return false
}
for itr.dbItr.Valid() {
//创建键 - 值字节的副本,因为潜在的键值字节由UTR重用。关闭时没有必要为迭代器释放内存而释放切片。
keyBytes := statemgmt.Copy(itr.dbItr.Key().Data())
valueBytes := statemgmt.Copy(itr.dbItr.Value().Data())
dataNode := unmarshalDataNodeFromBytes(keyBytes, valueBytes)
dataKey := dataNode.dataKey
chaincodeID, key := statemgmt.DecodeCompositeKey(dataNode.getCompositeKey())
value := dataNode.value
logger.Debug("Evaluating data-key = %s", dataKey)
bucketNumber := dataKey.bucketKey.bucketNumber
if bucketNumber > itr.currentBucketNumber {
itr.seekForStartKeyWithinBucket(bucketNumber)
continue
}
if chaincodeID == itr.chaincodeID && (itr.endKey == "" || key <= itr.endKey) {
logger.Debug("including data-key = %s", dataKey)
itr.currentKey = key
itr.currentValue = value
itr.dbItr.Next()
return true
}
itr.seekForStartKeyWithinBucket(bucketNumber + 1)
continue
}
itr.done = true
return false
}
//接口实现
type StateSnapshotIterator struct {
dbItr *gorocksdb.Iterator
}
//创建迭代器
func newStateSnapshotIterator(snapshot *gorocksdb.Snapshot) (*StateSnapshotIterator, error) {
dbItr := db.GetDBHandle().GetStateCFSnapshotIterator(snapshot)
dbItr.Seek([]byte{0x01})
dbItr.Prev()
return &StateSnapshotIterator{dbItr}, nil
}
// 接口实现细节-Next
func (snapshotItr *StateSnapshotIterator) Next() bool {
snapshotItr.dbItr.Next()
return snapshotItr.dbItr.Valid()
}
// 接口实现细节-GetRawKeyValue
func (snapshotItr *StateSnapshotIterator) GetRawKeyValue() ([]byte, []byte) {
//创建键 - 值字节的副本,因为潜在的键值字节由UTR重用。关闭时没有必要为迭代器释放内存而释放切片。
keyBytes := statemgmt.Copy(snapshotItr.dbItr.Key().Data())
valueBytes := statemgmt.Copy(snapshotItr.dbItr.Value().Data())
dataNode := unmarshalDataNodeFromBytes(keyBytes, valueBytes)
return dataNode.getCompositeKey(), dataNode.getValue()
}
// 接口实现细节-Close
func (snapshotItr *StateSnapshotIterator) Close() {
snapshotItr.dbItr.Close()
}
实现了 ‘statemgmt.HashableState’接口
构建一个新的StateImpl
func NewStateImpl() *StateImpl {
return &StateImpl{}
}
状态初始化
func (stateImpl *StateImpl) Initialize(configs map[string]interface{}) error {
initConfig(configs)
rootBucketNode, err := fetchBucketNodeFromDB(constructRootBucketKey())
if err != nil {
return err
}
if rootBucketNode != nil {
stateImpl.persistedStateHash = rootBucketNode.computeCryptoHash()
stateImpl.lastComputedCryptoHash = stateImpl.persistedStateHash
}
return nil
//我们可以创建一个高速缓存,并保持所有的bucket节点预加载。
//因为,铲斗节点不包含实际数据和最大可能的bucket是预先确定的,所述存储器需求
//可能不是非常高,或者可以容易地控制 - 通过保持在高速缓存中选择性bucket(bucket
//树的最可能的前面几级 - 因为,较高的bucket的水平,
//更是将需要散列重新计算的几率)
}
准备工作集
func (stateImpl *StateImpl) PrepareWorkingSet(stateDelta *statemgmt.StateDelta) error { logger.Debug("Enter - PrepareWorkingSet()") if stateDelta.IsEmpty() { logger.Debug("Ignoring working-set as it is empty") return nil } stateImpl.dataNodesDelta = newDataNodesDelta(stateDelta) stateImpl.bucketTreeDelta = newBucketTreeDelta() stateImpl.recomputeCryptoHash = true return nil }
计算datanodes的哈希加密计算
func computeDataNodesCryptoHash(bucketKey *bucketKey, updatedNodes dataNodes, existingNodes dataNodes) []byte {
logger.Debug("Computing crypto-hash for bucket [%s]. numUpdatedNodes=[%d], numExistingNodes=[%d]", bucketKey, len(updatedNodes), len(existingNodes))
bucketHashCalculator := newBucketHashCalculator(bucketKey)
i := 0
j := 0
for i < len(updatedNodes) && j < len(existingNodes) {
updatedNode := updatedNodes[i]
existingNode := existingNodes[j]
c := bytes.Compare(updatedNode.dataKey.compositeKey, existingNode.dataKey.compositeKey)
var nextNode *dataNode
switch c {
case -1:
nextNode = updatedNode
i++
case 0:
nextNode = updatedNode
i++
j++
case 1:
nextNode = existingNode
j++
}
if !nextNode.isDelete() {
bucketHashCalculator.addNextNode(nextNode)
}
}
var remainingNodes dataNodes
if i < len(updatedNodes) {
remainingNodes = updatedNodes[i:]
} else if j < len(existingNodes) {
remainingNodes = existingNodes[j:]
}
for _, remainingNode := range remainingNodes {
if !remainingNode.isDelete() {
bucketHashCalculator.addNextNode(remainingNode)
}
}
return bucketHashCalculator.computeCryptoHash()
}
包装了一个以上的潜在迭代,下面是具体实施,从第一底层迭代器开始,
耗尽第一底层迭代后,移动到第二个潜在的迭代器。实施重复这个直到已经耗尽之前的底层迭代器此外,如果键值是找到从底层迭代器的键值被跳过任一前代的迭代器
func (itr *CompositeRangeScanIterator) Next() bool {
currentItrNumber := itr.currentItrNumber
currentItr := itr.itrs[currentItrNumber]
logger.Debug("Operating on iterator number = %d", currentItrNumber)
keyAvailable := currentItr.Next()
for keyAvailable {
key, _ := currentItr.GetKeyValue()
logger.Debug("Retrieved key = %s", key)
skipKey := false
for i := currentItrNumber - 1; i >= 0; i-- {
logger.Debug("Evaluating key = %s in itr number = %d. currentItrNumber = %d", key, i, currentItrNumber)
previousItr := itr.itrs[i]
if previousItr.(*statemgmt.StateDeltaIterator).ContainsKey(key) {
skipKey = true
break
}
}
if skipKey {
logger.Debug("Skipping key = %s", key)
keyAvailable = currentItr.Next()
continue
}
break
}
if keyAvailable || currentItrNumber == 2 {
logger.Debug("Returning for current key")
return keyAvailable
}
logger.Debug("Moving to next iterator")
itr.currentItrNumber++
return itr.Next()
}
// 按实际的实施和数据库快照封装了对状态快照的迭代
type StateSnapshot struct {
blockNumber uint64
stateImplItr statemgmt.StateSnapshotIterator
dbSnapshot *gorocksdb.Snapshot
}
// 创建当前块全局状态的新快照
func newStateSnapshot(blockNumber uint64, dbSnapshot *gorocksdb.Snapshot) (*StateSnapshot, error) {
itr, err := stateImpl.GetStateSnapshotIterator(dbSnapshot)
if err != nil {
return nil, err
}
snapshot := &StateSnapshot{blockNumber, itr, dbSnapshot}
return snapshot, nil
}
//当您使用这个资源做这必须调用释放快照
func (ss *StateSnapshot) Release() {
ss.stateImplItr.Close()
ss.dbSnapshot.Release()
}
//接下来将迭代器移动到下一个键/值对的状态
func (ss *StateSnapshot) Next() bool {
return ss.stateImplItr.Next()
}
//返回在当前迭代器位置的键和值的原始字节
func (ss *StateSnapshot) GetRawKeyValue() ([]byte, []byte) {
return ss.stateImplItr.GetRawKeyValue()
}
// 返回与此全局状态的快照相关联的块号
func (ss *StateSnapshot) GetBlockNumber() uint64 {
return ss.blockNumber
}
构造全局状态,封装状态持久性的特定管理实现,它不是线程安全的
构造一个新的状态。对初始化状态的实现进行封装
func NewState() *State {
stateImplName := viper.GetString("ledger.state.dataStructure.name")
stateImplConfigs := viper.GetStringMap("ledger.state.dataStructure.configs")
if len(stateImplName) == 0 {
stateImplName = detaultStateImpl
stateImplConfigs = nil
}
switch stateImplName {
case "buckettree":
stateImpl = buckettree.NewStateImpl()
case "trie":
stateImpl = trie.NewStateTrie()
default:
panic(fmt.Errorf("Error during initialization of state implementation. State data structure '%s' is not valid.", stateImplName))
}
err := stateImpl.Initialize(stateImplConfigs)
if err != nil {
panic(fmt.Errorf("Error during initialization of state implementation: %s", err))
}
deltaHistorySize := viper.GetInt("ledger.state.deltaHistorySize")
if deltaHistorySize < 0 {
panic(fmt.Errorf("Delta history size must be greater than or equal to 0. Current value is %d.", deltaHistorySize))
}
return &State{stateImpl, statemgmt.NewStateDelta(), statemgmt.NewStateDelta(), "", make(map[string][]byte),
false, uint64(deltaHistorySize)}
}
标记开始新的tx。如果tx已在进行中,将调用混乱
func (state *State) TxBegin(txUUID string) {
logger.Debug("txBegin() for txUuid [%s]", txUUID)
if state.txInProgress() {
panic(fmt.Errorf("A tx [%s] is already in progress. Received call for begin of another tx [%s]", state.currentTxUUID, txUUID))
}
state.currentTxUUID = txUUID
}
返回chaincodeID和键的状态。如果提交为false,首先从内存中查找,如果缺失,从数据库获取。如果为true,仅仅可以从数据库中获取。
func (state *State) Get(chaincodeID string, key string, committed bool) ([]byte, error) {
if !committed {
valueHolder := state.currentTxStateDelta.Get(chaincodeID, key)
if valueHolder != nil {
return valueHolder.GetValue(), nil
}
valueHolder = state.stateDelta.Get(chaincodeID, key)
if valueHolder != nil {
return valueHolder.GetValue(), nil
}
}
return state.stateImpl.Get(chaincodeID, key)
}
返回一来获取所有startKey和endKey之间的键(和值)的迭代器
对于chaincodeID(假设按照键的词汇顺序)。
func (state *State) GetRangeScanIterator(chaincodeID string, startKey string, endKey string, committed bool) (statemgmt.RangeScanIterator, error) {
stateImplItr, err := state.stateImpl.GetRangeScanIterator(chaincodeID, startKey, endKey)
if err != nil {
return nil, err
}
if committed {
return stateImplItr, nil
}
return newCompositeRangeScanIterator(
statemgmt.NewStateDeltaRangeScanIterator(state.currentTxStateDelta, chaincodeID, startKey, endKey),
statemgmt.NewStateDeltaRangeScanIterator(state.stateDelta, chaincodeID, startKey, endKey),
stateImplItr), nil
}
如果计算要应用的状态增量如果是新状态的哈希值。
如果stateDelta已最近一次调用后,想要更改此功能只能重新计算
func (state *State) GetHash() ([]byte, error) {
logger.Debug("Enter - GetHash()")
if state.updateStateImpl {
logger.Debug("updating stateImpl with working-set")
state.stateImpl.PrepareWorkingSet(state.stateDelta)
state.updateStateImpl = false
}
hash, err := state.stateImpl.ComputeCryptoHash()
if err != nil {
return nil, err
}
logger.Debug("Exit - GetHash()")
return hash, nil
}
trie,又称前缀树或字典树,是一种有序树,用于保存关联数组,其中的键通常是字符串。与二叉查找树不同,键不是直接保存在节点中,而是由节点在树中的位置决定。
如下是trie key的接口定义
type trieKeyInterface interface {
getLevel() int //获取级别
getParentTrieKey() trieKeyInterface //获取父 trie key
getIndexInParent() int //获取索引
getEncodedBytes() []byte
}
创建一个trie key
func newTrieKey(chaincodeID string, key string) *trieKey { compositeKey := statemgmt.ConstructCompositeKey(chaincodeID, key) return newTrieKeyFromCompositeKey(compositeKey) }
从组合键中创建trie key
func newTrieKeyFromCompositeKey(compositeKey []byte) *trieKey {
return &trieKey{trieKeyEncoderImpl.newTrieKey(compositeKey)}
}
获取父triekey的索引
func (key *trieKey) getIndexInParent() int { if key.isRootKey() { panic(fmt.Errorf("Parent for Trie root shoould not be asked for")) } return key.trieKeyImpl.getIndexInParent() }
获取父 trie key
func (key *trieKey) getParentTrieKey() *trieKey { if key.isRootKey() { panic(fmt.Errorf("Parent for Trie root shoould not be asked for")) } return &trieKey{key.trieKeyImpl.getParentTrieKey()} }
获得字节编码,如果字节编码为0,代表为根的键值
func (key *trieKey) getEncodedBytes() []byte { return key.trieKeyImpl.getEncodedBytes() }
断言是否为孩子节点的trie key
func (key *trieKey) assertIsChildOf(parentTrieKey *trieKey) {
if !bytes.Equal(key.getParentTrieKey().getEncodedBytes(), parentTrieKey.getEncodedBytes()) {
panic(fmt.Errorf("trie key [%s] is not a child of trie key [%s]", key, parentTrieKey))
}
}
trienode的结构如下
type trieNode struct {
trieKey *trieKey
value []byte //值
childrenCryptoHashes map[int][]byte//孩子节点的哈希加密,key为int,value为byte
valueUpdated bool //值是否更新
childrenCryptoHashesUpdated map[int]bool//是否产生新的哈希加密
markedForDeletion bool //节店删除状态标记
}
设置孩子节点加密哈希
func (trieNode *trieNode) setChildCryptoHash(index int, childCryptoHash []byte) {
if index >= trieKeyEncoderImpl.getMaxTrieWidth() {
panic(fmt.Errorf("Index for child crypto-hash cannot be greater than [%d]. Tried to access index value [%d]", trieKeyEncoderImpl.getMaxTrieWidth(), index))
}
if childCryptoHash != nil {
trieNode.childrenCryptoHashes[index] = childCryptoHash
}
trieNode.childrenCryptoHashesUpdated[index] = true
}
合并丢失属性
func (trieNode *trieNode) mergeMissingAttributesFrom(dbTrieNode *trieNode) {
stateTrieLogger.Debug("Enter mergeMissingAttributesFrom() baseNode=[%s], mergeNode=[%s]", trieNode, dbTrieNode)
if !trieNode.valueUpdated {
trieNode.value = dbTrieNode.value
}
for k, v := range dbTrieNode.childrenCryptoHashes {
if !trieNode.childrenCryptoHashesUpdated[k] {
trieNode.childrenCryptoHashes[k] = v
}
}
stateTrieLogger.Debug("Exit mergeMissingAttributesFrom() mergedNode=[%s]", trieNode)
}
哈希加密计算
func (trieNode *trieNode) computeCryptoHash() []byte {
stateTrieLogger.Debug("Enter computeCryptoHash() for trieNode [%s]", trieNode)
var cryptoHashContent []byte
if trieNode.containsValue() {
stateTrieLogger.Debug("Adding value to hash computation for trieNode [%s]", trieNode)
key := trieNode.trieKey.getEncodedBytes()
cryptoHashContent = append(cryptoHashContent, proto.EncodeVarint(uint64(len(key)))...)
cryptoHashContent = append(cryptoHashContent, key...)
cryptoHashContent = append(cryptoHashContent, trieNode.value...)
}
sortedChildrenIndexes := trieNode.getSortedChildrenIndex()
for _, index := range sortedChildrenIndexes {
childCryptoHash := trieNode.childrenCryptoHashes[index]
stateTrieLogger.Debug("Adding hash [%#v] for child number [%d] to hash computation for trieNode [%s]", childCryptoHash, index, trieNode)
cryptoHashContent = append(cryptoHashContent, childCryptoHash...)
}
if cryptoHashContent == nil {
// 节点没有关联值,也没有关联孩子节点。
stateTrieLogger.Debug("Returning nil as hash for trieNode = [%s]. Also, marking this key for deletion.", trieNode)
trieNode.markedForDeletion = true
return nil
}
if !trieNode.containsValue() && trieNode.getNumChildren() == 1 {
// 节点没有关联值,并且只有一个孩子节点,传递的孩子hash丢失
stateTrieLogger.Debug("Returning hash as of a single child for trieKey = [%s]", trieNode.trieKey)
return cryptoHashContent
}
stateTrieLogger.Debug("Recomputing hash for trieKey = [%s]", trieNode)
return util.ComputeCryptoHash(cryptoHashContent)
}
func (trieNode *trieNode) marshal() ([]byte, error) {
buffer := proto.NewBuffer([]byte{})
// 写入值
err := buffer.EncodeRawBytes(trieNode.value)
if err != nil {
return nil, err
}
numCryptoHashes := trieNode.getNumChildren()
//写加密哈希数
err = buffer.EncodeVarint(uint64(numCryptoHashes))
if err != nil {
return nil, err
}
if numCryptoHashes == 0 {
return buffer.Bytes(), nil
}
for i, cryptoHash := range trieNode.childrenCryptoHashes {
//写入加密哈希索引
err = buffer.EncodeVarint(uint64(i))
if err != nil {
return nil, err
}
// 写入加密哈希
err = buffer.EncodeRawBytes(cryptoHash)
if err != nil {
return nil, err
}
}
return buffer.Bytes(), nil
}
获得孩子节点排序后的索引
func (trieNode *trieNode) getSortedChildrenIndex() []int {
keys := make([]int, trieNode.getNumChildren())
i := 0
for k := range trieNode.childrenCryptoHashes {
keys[i] = k
i++
}
sort.Ints(keys)
return keys
}
创建trie的增量
func newTrieDelta(stateDelta *statemgmt.StateDelta) *trieDelta {
trieDelta := &trieDelta{0, make(map[int]levelDeltaMap)}
chaincodes := stateDelta.GetUpdatedChaincodeIds(false)
for _, chaincodeID := range chaincodes {
updates := stateDelta.GetUpdates(chaincodeID)
for key, updatedvalue := range updates {
if updatedvalue.IsDelete() {
trieDelta.delete(chaincodeID, key)
} else {
if stateDelta.RollBackwards {
trieDelta.set(chaincodeID, key, updatedvalue.GetPreviousValue())
} else {
trieDelta.set(chaincodeID, key, updatedvalue.GetValue())
}
}
}
}
return trieDelta
}
从数据库中获取trie节点
func fetchTrieNodeFromDB(key *trieKey) (*trieNode, error) {
stateTrieLogger.Debug("Enter fetchTrieNodeFromDB() for trieKey [%s]", key)
openchainDB := db.GetDBHandle()
trieNodeBytes, err := openchainDB.GetFromStateCF(key.getEncodedBytes())
if err != nil {
stateTrieLogger.Error("Error in retrieving trie node from DB for triekey [%s]. Error:%s", key, err)
return nil, err
}
if trieNodeBytes == nil {
return nil, nil
}
trieNode, err := unmarshalTrieNode(key, trieNodeBytes)
if err != nil {
stateTrieLogger.Error("Error in unmarshalling trie node for triekey [%s]. Error:%s", key, err)
return nil, err
}
stateTrieLogger.Debug("Exit fetchTrieNodeFromDB() for trieKey [%s]", key)
return trieNode, nil
}
func (encoder *byteTrieKeyEncoder) newTrieKey(originalBytes []byte) trieKeyInterface {
len := len(originalBytes)
remainingBytes := len % numBytesAtEachLevel
//剩余字节=长度和每一个级别字节数的余数
bytesToAppend := 0
if remainingBytes != 0 {
bytesToAppend = numBytesAtEachLevel - remainingBytes
}
for i := 0; i < bytesToAppend; i++ {
originalBytes = append(originalBytes, byte(0))
}
return byteTrieKey(originalBytes)
}
首先定义一个对于索引的映射,类十余bytetriekey,实现了 trieKeyInterface接口
var charIndexMap = map[hexTrieKey]int{
"0": 0,
"1": 1,
"2": 2,
"3": 3,
"4": 4,
"5": 5,
"6": 6,
"7": 7,
"8": 8,
"9": 9,
"a": 10,
"b": 11,
"c": 12,
"d": 13,
"e": 14,
"f": 15,
}
func (encoder *hexTrieKeyEncoder) newTrieKey(originalBytes []byte) trieKeyInterface {
return hexTrieKey(hex.EncodeToString(originalBytes))
}
func (itr *RangeScanIterator) Next() bool {
if itr.done {
return false
}
for ; itr.dbItr.Valid(); itr.dbItr.Next() {
//使得键 - 值字节的副本,以至于使得潜在的键值字节由ITR重用。
//关闭时没有必要为迭代器释放内存释放切片。
trieKeyBytes := statemgmt.Copy(itr.dbItr.Key().Data())
trieNodeBytes := statemgmt.Copy(itr.dbItr.Value().Data())
value := unmarshalTrieNodeValue(trieNodeBytes)
if util.IsNil(value) {
continue
}
// 找到一个实际的键值
currentCompositeKey := trieKeyEncoderImpl.decodeTrieKeyBytes(statemgmt.Copy(trieKeyBytes))
currentChaincodeID, currentKey := statemgmt.DecodeCompositeKey(currentCompositeKey)
if currentChaincodeID == itr.chaincodeID && (itr.endKey == "" || currentKey <= itr.endKey) {
itr.currentKey = currentKey
itr.currentValue = value
itr.dbItr.Next()
return true
}
// 检索指定的范围内的所有的密钥
break
}
itr.done = true
return false
}
和range_scan_iterator的实现方式类似
func (snapshotItr *StateSnapshotIterator) Next() bool {
var available bool
for ; snapshotItr.dbItr.Valid(); snapshotItr.dbItr.Next() {
trieKeyBytes := statemgmt.Copy(snapshotItr.dbItr.Key().Data())
trieNodeBytes := statemgmt.Copy(snapshotItr.dbItr.Value().Data())
value := unmarshalTrieNodeValue(trieNodeBytes)
if util.NotNil(value) {
snapshotItr.currentKey = trieKeyEncoderImpl.decodeTrieKeyBytes(statemgmt.Copy(trieKeyBytes))
snapshotItr.currentValue = value
available = true
snapshotItr.dbItr.Next()
break
}
}
return available
}
结构如下
type StateTrie struct {
trieDelta *trieDelta
persistedStateHash []byte 持久化状态哈希
lastComputedCryptoHash []byte 最后哈希加密计算
recomputeCryptoHash bool 重新哈希加密计算
}
节点改变流程
func (stateTrie *StateTrie) processChangedNode(changedNode *trieNode) error {
stateTrieLogger.Debug("Enter - processChangedNode() for node [%s]", changedNode)
dbNode, err := fetchTrieNodeFromDB(changedNode.trieKey)
if err != nil {
return err
}
if dbNode != nil {
stateTrieLogger.Debug("processChangedNode() - merging attributes from db node [%s]", dbNode)
changedNode.mergeMissingAttributesFrom(dbNode)
}
newCryptoHash := changedNode.computeCryptoHash()
parentNode := stateTrie.trieDelta.getParentOf(changedNode)
if parentNode == nil {
parentNode = newTrieNode(changedNode.getParentTrieKey(), nil, false)
stateTrie.trieDelta.addTrieNode(parentNode)
}
parentNode.setChildCryptoHash(changedNode.getIndexInParent(), newCryptoHash)
if logHashOfEveryNode {
stateTrieLogger.Debug("Hash for changedNode[%s]", changedNode)
stateTrieLogger.Debug("%#v", newCryptoHash)
}
stateTrieLogger.Debug("Exit - processChangedNode() for node [%s]", changedNode)
return nil
}
为持久化添加更改
func (stateTrie *StateTrie) AddChangesForPersistence(writeBatch *gorocksdb.WriteBatch) error {
if stateTrie.recomputeCryptoHash {
_, err := stateTrie.ComputeCryptoHash()
if err != nil {
return err
}
}
if stateTrie.trieDelta == nil {
stateTrieLogger.Info("trieDelta is nil. Not writing anything to DB")
return nil
}
openchainDB := db.GetDBHandle()
lowestLevel := stateTrie.trieDelta.getLowestLevel()
for level := lowestLevel; level >= 0; level-- {
changedNodes := stateTrie.trieDelta.deltaMap[level]
for _, changedNode := range changedNodes {
if changedNode.markedForDeletion {
writeBatch.DeleteCF(openchainDB.StateCF, changedNode.trieKey.getEncodedBytes())
continue
}
serializedContent, err := changedNode.marshal()
if err != nil {
return err
}
writeBatch.PutCF(openchainDB.StateCF, changedNode.trieKey.getEncodedBytes(), serializedContent)
}
}
stateTrieLogger.Debug("Added changes to DB")
return nil
}
commons位于statemgmt目录下
// 构建复合键,并返回唯一代表一个指定的chaincodeID和 []byte字节。 //这假定chaincodeID不包含0×00字节 //但键值的可以强制实施的限制chaincodeID或使用长度前缀,而不是这里的分隔符
func ConstructCompositeKey(chaincodeID string, key string) []byte {
return bytes.Join([][]byte{[]byte(chaincodeID), []byte(key)}, stateKeyDelimiter)
}
//通过解码构建了compositeKey构造复合键的方法,返回原始chaincodeID和键形式
func DecodeCompositeKey(compositeKey []byte) (string, string) {
split := bytes.SplitN(compositeKey, stateKeyDelimiter, 2)
return string(split[0]), string(split[1])
}
//返回指定字节的副本
func Copy(src []byte) []byte {
dest := make([]byte, len(src))
copy(dest, src)
return dest
}
由stat实现不同的状态管理来实现接口,可以高效地为不同的工作负载条件下,计算加密哈希状态。
type HashableState interface {
//提供了一个机会来初始化。例如, 可以加载数据库的一些数据来实现state
Initialize(configs map[string]interface{}) error
// 从数据库获取值
Get(chaincodeID string, key string) ([]byte, error)
// 需要施加到状态,通过捕获需要的变化的stateDelta
PrepareWorkingSet(stateDelta *StateDelta) error
//计算状态加密哈希来实现state假设状态增量适用以PrepareWorkingSet方法传递
ComputeCryptoHash() ([]byte, error)
//添加的所有键值对,它需要为数据库持续触发statedelta(在、、//PrepareWorkingSet方法传递)。
//除了在StateDelta中的信息,实现还可能希望
//更快进行持久化中间结果的加密哈希计算
AddChangesForPersistence(writeBatch *gorocksdb.WriteBatch) error
// ClearWorkingSet可能会清除state实现,它可能已经建立了计算哈希加密和持续变化的状态增量的数据结构
ClearWorkingSet(changesPersisted bool)
GetStateSnapshotIterator(snapshot *gorocksdb.Snapshot) (StateSnapshotIterator, error)
//提供一种应该给一个给定的chaincodeID使得返回键应该词法更大//所有键值迭代大于或等于startKey且小于或等于endKey。如果startKey参//数的值是假设一个空字符串startKey是在DB的chaincodeID可用最小的关//键。同样,对于endKey参数为空字符串假定endKey可用的分贝为chaincodeID//的最大键
GetRangeScanIterator(chaincodeID string, startKey string, endKey string) (RangeScanIterator, error)
//与StateDelta之前一些提示制备和PrepareWorkingSet方法通//过提供了可能。一个state的实现可以使用这个提示的预取相关数据,因此,//如果这可以提高哈希加密计算方法的性能(当被调用在以后的时间)
PerfHintKeyChanged(chaincodeID string, key string)
}
state增量迭代器结构如下
type StateDeltaIterator struct {
updates map[string]*UpdatedValue //更新
relevantKeys []string // 关联键
currentKeyIndex int // 当前键的索引
done bool //完成标识
}
控制变现有的状态。这个结构被用于TX-batchAlso的执行期间中保持未提交的变化,以用于以块的状态转移到另一peer
type StateDelta struct { ChaincodeStateDeltas map[string]*ChaincodeStateDelta //允许一个控制此增量是否会向前或向后回滚的状态 RollBackwards bool }
如果更新值已经设置为给定的chaincode ID和密钥,则为true
func (stateDelta *StateDelta) IsUpdatedValueSet(chaincodeID, key string) bool {
chaincodeStateDelta, ok := stateDelta.ChaincodeStateDeltas[chaincodeID]
if !ok {
return false
}
if _, ok := chaincodeStateDelta.UpdatedKVs[key]; ok {
return true
}
return false
}
合并另一增量- 如果一个键值存在,则现有键的值被覆盖
func (stateDelta *StateDelta) ApplyChanges(anotherStateDelta *StateDelta) {
for chaincodeID, chaincodeStateDelta := range anotherStateDelta.ChaincodeStateDeltas {
existingChaincodeStateDelta, existingChaincode := stateDelta.ChaincodeStateDeltas[chaincodeID]
for key, valueHolder := range chaincodeStateDelta.UpdatedKVs {
var previousValue []byte
if existingChaincode {
existingUpdateValue, existingUpdate := existingChaincodeStateDelta.UpdatedKVs[key]
if existingUpdate {
// 现有的状态增量已经为这个键值的更新值
previousValue = existingUpdateValue.PreviousValue
} else {
//使用以前的值在新的状态增量的设置
previousValue = valueHolder.PreviousValue
}
} else {
//使用之前值的状态增量
previousValue = valueHolder.PreviousValue
}
if valueHolder.IsDelete() {
stateDelta.Delete(chaincodeID, key, previousValue)
} else {
stateDelta.Set(chaincodeID, key, valueHolder.Value, previousValue)
}
}
}
}
返回在存在于chaincodeIDs的状态增量
如果排序为true,方法按照字典顺序返回在排序之前的chaincodeIDs的排序顺序
func (stateDelta *StateDelta) GetUpdatedChaincodeIds(sorted bool) []string {
updatedChaincodeIds := make([]string, len(stateDelta.ChaincodeStateDeltas))
i := 0
for k := range stateDelta.ChaincodeStateDeltas {
updatedChaincodeIds[i] = k
i++
}
if sorted {
sort.Strings(updatedChaincodeIds)
}
return updatedChaincodeIds
}
好了,ledger源码就分析到这里,其实仔细观察,会发现只要有一个iterrator,就会重写对应的next、getvalue方法等,各个模块之间相互协作,比较难的就是hash加密算法,以及状态增量的计算。小编接下来将对各个模块之间进行结构功能图解,敬请期待