platform设备和驱动与linux设备模型密切相关。platform在linux设备模型中,其实就是一种虚拟总线没有对应的硬件结构。它的主要作用就是管理系统的外设资源。linux在引入了platform机制之后,内核假设所有的这些外设都挂载在platform虚拟总线上,以便进行统一管理。
1.Platform初始化
在系统中platform对应的文件drivers/base/platform.c,它不是作为一个模块注册到内核的,关键的注册总线的函数由系统初始化部分,系统启动时初始化时创建了platform_bus设备和platform_bus_type总线。内核初始化函数kernel_init()中调用了do_basic_setup(),该函数中调用driver_init(),该函数中调用platform_bus_init(),我们看看platform_bus_init()函数:
int __init platform_bus_init(void) { int error; early_platform_cleanup(); error = device_register(&platform_bus);//总线也是设备,所以也要进行设备的注册 if (error) return error; error = bus_register(&platform_bus_type);//注册platform_bus_type总线到内核 if (error) device_unregister(&platform_bus); return error; }
struct device platform_bus = { .init_name = "platform", };
struct bus_type platform_bus_type = { .name = "platform", .dev_attrs = platform_dev_attrs,//设备属性 .match = platform_match,//match函数,这个函数在当属于platform的设备或者驱动注册到内核时就会调用,完成设备与驱动的匹配 工作 .uevent = platform_uevent,// 热插拔操作函数 .pm = &platform_dev_pm_ops, };};
改函数把设备名为platform的设备platform_bus注册到系统中,其他的platform的设备都会以它为parent。它在sysfs中目录下.即 /sys/devices/platform。接着bus_register(&platform_bus_type)注册了platform_bus_type总线类型。
来看看platform_match函数:
static int platform_match(struct device *dev, struct device_driver *drv) { struct platform_device *pdev = to_platform_device(dev); struct platform_driver *pdrv = to_platform_driver(drv); /* Attempt an OF style match first */ if (of_driver_match_device(dev, drv)) return 1; /* Then try to match against the id table */ if (pdrv->id_table) return platform_match_id(pdrv->id_table, pdev) != NULL; /* fall-back to driver name match */ return (strcmp(pdev->name, drv->name) == 0); }
static const struct platform_device_id *platform_match_id( const struct platform_device_id *id, struct platform_device *pdev) { while (id->name[0]) { if (strcmp(pdev->name, id->name) == 0) { pdev->id_entry = id; return id; } id++; } return NULL; }
不难看出,如果pdrv的id_table数组中包含了pdev->name,或者drv->name和pdev->name名字相同,都会认为是匹配成功。id_table数组是为了应对那些对应设备和驱动的drv->name和pdev->name名字不同的情况。
再看看platform_uevent()函数:
static int platform_uevent(struct device *dev, struct kobj_uevent_env *env) { struct platform_device *pdev = to_platform_device(dev); int rc; /* Some devices have extra OF data and an OF-style MODALIAS */ rc = of_device_uevent_modalias(dev,env); if (rc != -ENODEV) return rc; add_uevent_var(env, "MODALIAS=%s%s", PLATFORM_MODULE_PREFIX, pdev->name); return 0; }
添加了MODALIAS环境变量,我们回顾一下:platform_bus. parent->kobj->kset->uevent_ops为device_uevent_ops,bus_uevent_ops的定义如下:
static struct kset_uevent_ops device_uevent_ops = {
.filter = dev_uevent_filter,
.name = dev_uevent_name,
.uevent = dev_uevent,
};
当调用device_add()时会调用kobject_uevent(&dev->kobj, KOBJ_ADD)产生一个事件,这个函数中会调用相应的kset_uevent_ops的uevent函数,这里即为dev_uevent(),我们看一下这个函数的代码片段:
static int dev_uevent(struct kset *kset, struct kobject *kobj,
struct kobj_uevent_env *env)
{
.
.
.
/* have the bus specific function add its stuff */
if (dev->bus && dev->bus->uevent) {
retval = dev->bus->uevent(dev, env);
if (retval)
pr_debug("device: '%s': %s: bus uevent() returned %d\n",
dev_name(dev), __func__, retval);
}
.
.
.
}
从这里看到如果bus->uevent()函数存在则会调用它。
到这里我们清楚了platform_uevent会在哪里调用了。
2.Platform设备的注册
对于platform设备的初始化,内核源码也提供了platform_device_alloc()函数。
对于platform设备的初注册,内核源码提供了platform_device_add()函数,它是进行一系列的操作后调用device_add()将设备注册到相应的总线上,内核代码中platform设备的其他注册函数都是基于这个函数,如platform_device_register()、platform_device_register_simple()、platform_device_register_data()等。
我们对这些函数逐个分析,首先看看初始化函数platform_device_alloc():
struct platform_device *platform_device_alloc(const char *name, int id) { struct platform_object *pa; pa = kzalloc(sizeof(struct platform_object) + strlen(name), GFP_KERNEL); if (pa) { strcpy(pa->name, name); pa->pdev.name = pa->name; pa->pdev.id = id; device_initialize(&pa->pdev.dev); pa->pdev.dev.release = platform_device_release; arch_setup_pdev_archdata(&pa->pdev); } return pa ? &pa->pdev : NULL; }
该函数首先为platform设备分配内存空间,这里的struct platform_object结构是struct platform _device结构的封装,其定义如下:
struct platform_object {
struct platform_device pdev;
char name[1];
};
其中第二个字段name的地址用于存放第一个字段pdev的name指针上的内容,函数中的代码说明了这点:
strcpy(pa->name, name);
pa->pdev.name = pa->name;
接着用输入参数id初始化platform_device的id字段,这个id是在设置代表它的kobject时会用到的,我们将在后面分析到,如果不用它,则设为-1。
接着调用device_initialize()初始化platform_device内嵌的device,并设置其release函数指针。
接着我们看看platform_device_add()函数
/** * platform_device_add - add a platform device to device hierarchy * @pdev: platform device we're adding * * This is part 2 of platform_device_register(), though may be called * separately _iff_ pdev was allocated by platform_device_alloc(). */ int platform_device_add(struct platform_device *pdev) { int i, ret = 0;
if (!pdev) return -EINVAL;
if (!pdev->dev.parent)/*都说总线有两个链表,一个是设备链表(通过device 内嵌)一个是驱动链表(通过device_driver内嵌)这里如果pdev->dev.parent为0,说明设备链表还没有设备,因此处理办法是将platform_bus作为设备链表的开始,一直感觉platform_bus和platform_bus_type很难区分,不过在这里清楚了platform_bus是一个设备,platform_bus_type才是真正的总线*/ pdev->dev.parent = &platform_bus;
pdev->dev.bus = &platform_bus_type;/*device 要挂接在platform_bus_type这个总线上*/ /*设置pdev->dev内嵌的kobj的name字段,它是pdev->name指向的内容加上id,如果id为-1则忽略它*/ if (pdev->id != -1) dev_set_name(&pdev->dev, "%s.%d", pdev->name, pdev->id); else dev_set_name(&pdev->dev, "%s", pdev->name);
for (i = 0; i < pdev->num_resources; i++) { struct resource *p, *r = &pdev->resource[i];
if (r->name == NULL) r->name = dev_name(&pdev->dev);/*资源的名称赋值为pdev->dev.bus_id,如果一个platform_device有多个resource 则出现同名现象*/
p = r->parent; if (!p) {/*父资源为0,说明不是从一个大的资源里面切割出来的*/ if (resource_type(r) == IORESOURCE_MEM) p = &iomem_resource; else if (resource_type(r) == IORESOURCE_IO) p = &ioport_resource; }
if (p && insert_resource(p, r)) {/*如果从父资源里面切割失败,则进行如下处理*/ printk(KERN_ERR "%s: failed to claim resource %d\n", dev_name(&pdev->dev), i); ret = -EBUSY; goto failed; } }
pr_debug("Registering platform device '%s'. Parent at %s\n", dev_name(&pdev->dev), dev_name(pdev->dev.parent));
ret = device_add(&pdev->dev);/*资源也分配好了,准备工作也做足,终于可以把设备添加到设备链表里面了*/ if (ret == 0) return ret;
failed: while (--i >= 0) { struct resource *r = &pdev->resource[i]; unsigned long type = resource_type(r);
if (type == IORESOURCE_MEM || type == IORESOURCE_IO) release_resource(r); }
return ret; }
platform_device_add()函数分析完了,我们看下platform_device_register()函数:
/** * platform_device_register - add a platform-level device * @pdev: platform device we're adding */ int platform_device_register(struct platform_device *pdev) { device_initialize(&pdev->dev); arch_setup_pdev_archdata(pdev); return platform_device_add(ppdev); }
初始化pdev->dev后调用platform_device_add()把它注册到platform_bus_type上。
另外一个注册函数platform_device_register_simple(),它的作用是根据传入的资源和资源数注册设备。
3.Platform驱动的注册
我们在设备驱动模型的分析中已经知道驱动在注册要调用driver_register(),platform driver的注册函数platform_driver_register()同样也是进行其它的一些初始化后调用driver_register()将驱动注册到platform_bus_type总线上,看一下这个函数:
int platform_driver_register(struct platform_driver *drv) { drv->driver.bus = &platform_bus_type; if (drv->probe) drv->driver.probe = platform_drv_probe; if (drv->remove) drv->driver.remove = platform_drv_remove; if (drv->shutdown) drv->driver.shutdown = platform_drv_shutdown; return driver_register(&drv->driver); }
先看看struct platform_driver结构:
struct platform_driver { int (*probe)(struct platform_device *); int (*remove)(struct platform_device *); void (*shutdown)(struct platform_device *); int (*suspend)(struct platform_device *, pm_message_t state); int (*resume)(struct platform_device *); struct device_driver driver; const struct platform_device_id *id_table; };
上面的函数指定了内嵌的driver的bus字段为platform_bus_type,即为它将要注册到的总线。
然后设定了platform_driver内嵌的driver的probe、remove、shutdown函数。
static int platform_drv_probe(struct device *_dev) { struct platform_driver *drv = to_platform_driver(_dev->driver); struct platform_device *dev = to_platform_device(_dev); return drv->probe(dev); } static int platform_drv_remove(struct device *_dev) { struct platform_driver *drv = to_platform_driver(_dev->driver); struct platform_device *dev = to_platform_device(_dev); return drv->remove(dev); } static void platform_drv_shutdown(struct device *_dev) { struct platform_driver *drv = to_platform_driver(_dev->driver); struct platform_device *dev = to_platform_device(_dev); drv->shutdown(dev); }
从这三个函数的代码可以看到,又找到了相应的platform_driver和platform_device,然后调用platform_driver的probe、remove、shutdown函数。这是一种高明的做法:在不针对某个驱动具体的probe、remove、shutdown指向的函数,而通过上三个过度函数来找到platform_driver,然后调用probe、remove、shutdown接口。
到此我们了解了platform的初始化,以及设备和驱动的注册原理和接口函数。