hdu 4691 Front compression
题意:很简单的,就是给一个字符串,然后给出n个区间,输出两个ans,一个是所有区间的长度和,另一个是区间i跟区间i-1的最长公共前缀的长度的数值的长度,加上不是公共部分的字符个数,加2,累加起来。
解题思路:后缀数组裸题。。用rmq求最长公共前缀,询问就是o(1)的。很多用暴力的方法过的,对于i区间与i-1区间,如果左端点一样,就去长度小的那个,否则就暴力枚举相同的前缀。但我认为这样是不可以的,比如我的数据是10w个a,询问10w,第i个区间的左端点是i,所有右端点是len[s],那这样的复杂度应该是o(n^2)吧。所以还是后缀数组靠谱。。
#include<stdio.h> #include<string.h> #include<algorithm> #define ll __int64 using namespace std ; const int maxn = 511111 ; int p[maxn] ; int min ( int a , int b ) { return a < b ? a : b ; } int dp[25][maxn] , f[maxn] , fuck , n , l[maxn] , r[maxn] ; ll ans1 , ans2 , d[maxn] ; ll get ( int n ) { ll i = 0 ; if ( n == 0 ) i = 1 ; while ( n ) { i ++ ; n /= 10 ; } return i + 1 ; } struct Suf{ int wa[maxn] , wb[maxn] , ws[maxn] , wv[maxn] ; int rank[maxn] , hei[maxn] , sa[maxn] ; int cmp ( int *r , int i , int j , int l ){ return r[i] == r[j] && r[i+l] == r[j+l] ; } void da ( int *r , int n , int m ){ int *x = wa , *y = wb , *t ; int i , j , k , p ; for ( i = 0 ; i < m ; i ++ ) ws[i] = 0 ; for ( i = 0 ; i < n ; i ++ ) ws[x[i]=r[i]] ++ ; for ( i = 1 ; i < m ; i ++ ) ws[i] += ws[i-1] ; for ( i = n - 1 ; i >= 0 ; i -- ) sa[--ws[x[i]]] = i ; for ( j = 1 , p = 1 ; p < n ; j *= 2 , m = p ) { for ( p = 0 , i = n - j ; i < n ; i ++ ) y[p++] = i ; for ( i = 0 ; i < n ; i ++ ) if ( sa[i] >= j ) y[p++] = sa[i] - j ; for ( i = 0 ; i < m ; i ++ ) ws[i] = 0 ; for ( i = 0 ; i < n ; i ++ ) ws[x[i]] ++ ; for ( i = 1 ; i < m ; i ++ ) ws[i] += ws[i-1] ; for ( i = n - 1 ; i >= 0 ; i -- ) sa[--ws[x[y[i]]]] = y[i] ; for ( t = x , x = y , y = t ,x[sa[0]] = 0 , p = 1 , i = 1 ; i < n ; i ++ ) x[sa[i]] = cmp ( y , sa[i-1] , sa[i] , j ) ? p - 1 : p ++ ; } k = 0 ; for ( i = 1 ; i < n ; i ++ ) rank[sa[i]] = i ; for ( i = 0 ; i < n - 1 ; hei[rank[i++]] = k ) for ( k ? k -- : 0 , j = sa[rank[i]-1] ; r[i+k] == r[j+k] ; k ++ ) ; } void rmq ( int n ) { int i , j ; for ( i = 1 ; i <= n ; i ++ ) dp[0][i] = hei[i] ; for ( i = 1 ; i <= 20 ; i ++ ) for ( j = 1 ; j + ( 1 << i ) - 1 <= n ; j ++ ) dp[i][j] = min ( dp[i-1][j] , dp[i-1][j+(1<<(i-1))] ) ; } int query ( int l , int r ) { if ( l > r ) swap ( l , r ) ; l ++ ;//要从height[l+1]到height[r]之间求最小值 if ( l == r ) return dp[0][l] ; int k = r - l + 1 ; return min ( dp[f[k]][l] , dp[f[k]][r-(1<<f[k])+1] ) ; } void solve () { int i , j , k ; for ( i = 2 ; i <= n ; i ++ ) { ll add ; if ( l[i] == l[i-1] ) add = min ( d[i] , d[i-1] ) ; else add = query ( rank[l[i-1]] , rank[l[i]] ) ; // printf ( "add = %I64d , d1 = %I64d , d2 = %I64d\n" , add , d[i-1] , d[i] ) ; add = min ( add , min ( d[i] , d[i-1] ) ) ; ans2 += get ( add ) ; // printf ( "add = %I64d\n" , d[i] - add + 1 ) ; ans2 += (ll) d[i] - add + 1 ; // printf ( "ans2 = %I64d\n" , ans2 ) ; } } } arr ; char s1[maxn] ; int s[maxn] ; int main () { int cas , i , j , ca = 0 ; j = 0 ; for ( i = 1 ; i < maxn - 1111 ; i ++ ) { if ( i > 1 << j + 1 ) j ++ ; f[i] = j ; } while ( scanf ( "%s" , s1 ) != EOF ) { ans1 = ans2 = 0 ; int len = strlen ( s1 ) ; scanf ( "%d" , &n ) ; for ( i = 1 ; i <= n ; i ++ ) { scanf ( "%d%d" , &l[i] , &r[i]) , r[i] -- , d[i] = r[i] - l[i] + 1 ; ans1 += (ll) d[i] + 1 ; } for ( i = 0 ; i < len ; i ++ ) s[i] = s1[i] ; s[len] = 0 ; arr.da ( s , len + 1 , 555 ) ; ans2 = 2 + d[1] + 1 ; // printf ( "ans2 = %I64d\n" , ans2 ) ; arr.rmq ( len ) ; arr.solve () ; printf ( "%I64d %I64d\n" , ans1 , ans2 ) ; } }