Python如何进行cross validation training

以4-fold validation training为例

(1) 给定数据集data和标签集label

样本个数为

sampNum = len(data)

(2) 将给定的所有examples分为10组

每个fold个数为

foldNum = sampNum/10  

(3) 将给定的所有examples分为10组

参考scikit-learn的3.1节:Cross-validation 

 1 import np
 2 from sklearn import cross_validation
 3 # dataset
 4 
 5 data = np.array([[1,3],[2,4],[3.1,3],[4,5],[5.0,0.3],[4.1,3.1]])
 6 label = np.array([0,1,1,1,0,0])
 7 sampNum= len(data)
 8 
 9 # 10-fold (9份为training,1份为validation)
10 kf = KFold(len(data), n_folds=4)
11 iFold = 0
12 for train_index, val_index in kf:
13     iFold = iFold+1
14     X_train, X_val, y_train, y_val = data[train_index], data[val_index], label[train_index], label[val_index] # 这里的X_train,y_train为第iFold个fold的训练集,X_val,y_val为validation set

 

  

给定的数据集如下: 

 Python如何进行cross validation training_第1张图片  

 

所有样本的指标集为:

0 1 2 3 4 5 6 7

每个iFold(共4个)的训练集和validation set的index分别为:

 iFold = 0 (训练集中包含6个examples,validation set 中包含3个examples)

iFold = 1

iFold = 2

iFold = 3

每个iFold的训练集和validation set分别为:

X_train, X_val, y_train, y_val = data[train_index], data[val_index], label[train_index], label[val_index]

  

 

你可能感兴趣的:(Python如何进行cross validation training)