UVa 10870 Recurrences / 矩阵快速幂

给你一个数列的前d项 第n项(n > d) f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), for n > d.

n很大 可以构造一个矩阵

f(n) = A*f(n-1)

例如n=5

0   1   0   0   0             f[1]                           f[2]

0   0   1   0   0             f[2]                           f[3]

0   0   0   1   0      *      f[3]            =              f[4]                   

0   0   0   0   1             f[4]                           f[5]

a5  a4  a3  a2  a1            f[5]                           f[6]


f[n] = A^(n-d)*f[d];f[n] = A^(n-d)*f[d];

所以可以快速幂出A矩阵的n-d次 在乘以f[d]

 

#include <cstdio>
#include <cstring>
const int maxn = 20;

struct Matrix
{
	long long a[maxn][maxn];
};
Matrix a, c;
long long b[maxn];
long long n, m;
int d;
Matrix matrix(Matrix x, Matrix y)
{
	Matrix z;
	memset(z.a, 0, sizeof(z.a));
	for(int i = 1; i <= d; i++)
	{
		for(int j = 1; j <= d; j++)
		{
			for(int k = 1; k <= d; k++)
			{
				z.a[i][j] += x.a[i][k] * y.a[k][j];
				z.a[i][j] %= m;
			}
		}
	}
	return z;
}
void matrix_pow(long long n)
{
	while(n)
	{
		if(n&1)
			c = matrix(c, a);
		a = matrix(a, a);
		n >>= 1;
	}
}
int main()
{
	while(scanf("%d %d %d", &d, &n, &m), d || n || m)
	{
		memset(a.a, 0, sizeof(a.a));
		memset(c.a, 0, sizeof(c.a));
		for(int i = d; i >= 1; i--)
			scanf("%d", &a.a[d][i]);
		for(int i = 1; i <= d; i++)
			scanf("%d", &b[i]);
		for(int i = 1; i < d; i++)
			a.a[i][i+1] = 1;
		for(int i = 1; i <= d; i++)
			c.a[i][i] = 1;
		long long ans = 0;
		if(d < n)
		{
			matrix_pow(n-d);//n-d个矩阵a相乘存在c c初始化为单位矩阵 
			for(int i = 1;i <= d; i++)
			{
				ans += c.a[d][i]*b[i];
				ans %= m;
			}
		}
		else
			ans = b[n]%m;
			
		printf("%d\n", ans);
	}	 
	return 0;
}
/*
1 1 100
2
1 

2 10 100
1 1
1 1 

3 2147483647 12345
12345678 0 12345
1 2 3

0 0 0
*/


 

你可能感兴趣的:(UVa 10870 Recurrences / 矩阵快速幂)