初次使用svm,不知道svm_train的参数该怎么设置,svm_train源码的注释里虽然有相关解释,但是看得云里雾里,如下:
Train an SVM model from data (y, x) or an svm_problem prob using
'options' or an svm_parameter param.
If '-v' is specified in 'options' (i.e., cross validation)
either accuracy (ACC) or mean-squared error (MSE) is returned.
options:
-s svm_type : set type of SVM (default 0)
0 -- C-SVC(multi-class classification)
1 -- nu-SVC(multi-class classification)
2 -- one-class SVM
3 -- epsilon-SVR(regression)
4 -- nu-SVR(regression)
-t kernel_type : set type of kernel function (default 2)
0 -- linear: u'*v
1 -- polynomial: (gamma*u'*v + coef0)^degree
2 -- radial basis function: exp(-gamma*|u-v|^2)
3 -- sigmoid: tanh(gamma*u'*v + coef0)
4 -- precomputed kernel (kernel values in training_set_file)
-d degree : set degree in kernel function (default 3)
-g gamma : set gamma in kernel function (default 1/num_features)
-r coef0 : set coef0 in kernel function (default 0)
-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
-m cachesize : set cache memory size in MB (default 100)
-e epsilon : set tolerance of termination criterion (default 0.001)
-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)
-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)
-v n: n-fold cross validation mode
-q : quiet mode (no outputs)
在网上百度了很多例子,仿照别人的写,可仍然是报错
后来,看了svm_train的源代码,
代码修改后,便输出了我想要的结果
为这个问题弄了一天,不知道该高兴还是伤心
PS:另外,通过查看parse_options函数源代码发现,第三个参数可以写成list形式,也可以写成str形式