- 线上正常,本地调用deepseek接口报错:Error:SSL certificate problem: unable to get local issuer certificate
落落鱼2013
ssl服务器网络协议deepseek
如题,线上调用deepseek接口正常,但本地调用接口时报以下错误:Error:SSLcertificateproblem:unabletogetlocalissuercertificate。问了下豆包,得知是缺少本地证书的问题。然后用小P配置了ssl证书用https访问依旧不行,报错不变:解决办法:调用curl函数时添加以下配置项:curl_setopt($ch,CURLOPT_SSL_VERI
- 深入理解RAG:大语言模型时代的知识增强架构
小胡说技书
#大模型/智能体语言模型架构人工智能python大模型RAG
在人工智能快速发展的今天,大语言模型(LLM)已经展现出令人惊叹的能力。然而,即使是最先进的模型也面临着知识更新滞后、事实性错误(幻觉)和专业领域知识不足等根本性挑战。检索增强生成(Retrieval-AugmentedGeneration,简称RAG)技术的出现,为解决这些问题提供了一个优雅而有效的方案。一、为什么需要RAG?从大模型的局限性说起1.1大语言模型的固有缺陷要理解RAG的价值,我们
- git - Unable to negotiate with 158.219.232.171 port 22: no matching host key type found.
fareast_mzh
gitssh
[email protected]:path/projectname.gitCloninginto'projectname'...Unabletonegotiatewith158.219.232.171port22:nomatchinghostkeytypefound.Theiroffer:ssh-rsafatal:Couldnotreadfromremoterep
- ubuntu 20.04安装配置ssh远程服务中出现的一些问题及总结
ava不要秃头
ubuntu服务器linux
0.安装配置过程参考(56条消息)ubuntu20.04开启SSH远程登录_从此开始低调范✌️的博客-CSDN博客_ubuntu开启ssh远程登录1.输入sudoapt-getinstallopenssh-server提示Readingstateinformation...Error!E:Unabletoparsepackagefile/var/lib/apt/extended_states(1)
- 【大模型应用开发 动手做AI Agent】RAG和Agent
AI智能应用
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
RAG,Agent,大模型应用,AI,知识图谱,检索,响应生成,聊天机器人1.背景介绍近年来,大模型技术取得了飞速发展,其强大的语言理解和生成能力为人工智能应用带来了新的机遇。然而,单纯依靠大模型的零样本学习能力往往难以满足复杂场景下的应用需求。为了更好地将大模型应用于实际场景,研究者们提出了RetrievalAugmentedGeneration(RAG)和AIAgent等新兴技术。RAG技术将
- AI大模型RAG架构详细解析(一)标准RAG、纠正型RAG、推测型RAG、融合型RAG、代理型RAG
大模型面微调_
人工智能架构LLM大模型ai自然语言处理RAG
在当今的AI时代,你是否想过,如果AI能够每次都从全球知识中精准地提取完美答案,那会是怎样的体验?检索增强生成(Retrieval-AugmentedGeneration,简称RAG)正是实现这一目标的幕后英雄。从ChatGPT引用来源的能力到企业AI扫描数千份文件,RAG为语言模型提供了现实世界的根基。然而,RAG并非“一刀切”的解决方案。随着时间的推移,AI研究人员设计了多种专门的RAG架构,
- 大模型RAG系统面试题及参考答案
大模型大数据攻城狮
算法大模型智能体aiagentpython面试向量数据库RAG
目录什么是RAG?它由哪些核心部分组成?RAG与传统的LLM(如GPT)生成方式有何区别?RAG的设计初衷是什么?解决了哪些问题?检索器(Retriever)在RAG中的作用是什么?生成器(Generator)如何与检索器交互?什么是向量检索(denseretrieval)与稀疏检索(sparseretrieval)?举例说明。RAG如何减少“幻觉(hallucination)”?为什么说RAG可
- Spring Boot + LangChain 构建 RAG 应用
程序员丸子
langchainAI大模型语言模型自然语言处理人工智能大语言模型RAG
使用LangChain构建RAG应用程序什么是RAG?检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种结合了检索和生成两种关键技术的机器学习方法。这种方法在自然语言处理任务中特别有效,例如对话系统和问答系统。RAG的关键组件检索:•RAG首先从大型数据集或知识库中检索与用户查询相关的文档或数据。•通常使用信息检索技术,如向量搜索或关键词匹配。生成:•在检索到
- 大模型实战干货:如何基于LangChain 在本地构建一个可运行的 RAG 系统(附完整代码)
勤奋的知更鸟
PythonAI大模型AI工具langchain
什么是RAGRAG(Retrieval-AugmentedGeneration,检索增强生成)是一种将语言模型(如ChatGPT)与外部知识库结合的技术,使其在生成回答时能够调用真实知识来源,而不仅依赖模型本身的参数记忆。LangChain是一个构建大语言模型(LLM)应用的强大框架,提供了连接向量数据库、检索器、提示模板和LLM的模块化工具链。RAG系统结构图项目依赖安装pipinstallla
- Unable to start embedded Tomcat
MyFreeIT
JDKtomcatmybatisjava
通常是由于xml文件配置错误导致1.mapper指向错误2.字段类型错误TINYINT是数据库类型或者String是Java类型
- RAG 和微调如何抉择
成都犀牛
深度学习人工智能机器学习pytorch
要选择RAG(Retrieval-AugmentedGeneration)还是微调(Fine-tuning),或者两者结合,主要取决于如下数据特性应用场景资源限制模型行为的控制需求RAGvs.微调:如何选择?特性/维度RAG(检索增强生成)微调(Fine-tuning)数据特性知识不断变化/更新、信息量大、需要引用来源、数据隐私性高。数据领域特定、格式特殊、语言风格独特、知识相对稳定。知识来源外部
- 互联网大厂Java求职面试:AI与大模型技术下的RAG系统架构设计与性能优化
在未来等你
Java场景面试宝典AI技术编程JavaSpring
【互联网大厂Java求职面试:AI与大模型技术下的RAG系统架构设计与性能优化】文章内容面试官开场白技术总监(李明):“郑薪苦,欢迎来到今天的面试。我是李明,负责我们公司的AI平台架构设计。今天我们将围绕一个非常前沿的场景——基于RAG(Retrieval-AugmentedGeneration)系统的架构设计与性能优化进行深入探讨。这个场景在当前的AI应用中非常重要,尤其是在企业知识库与大模型深
- protobuf遇到protoc-gen-go: unable to determine Go import path for “xxx“
Panda-gallery
golang
问题这个错误是因为.proto文件中缺少必需的go_package选项。在protobuf生成Go代码时,这是关键配置项。panda@VM:~/dev/pb$protoc--go_out=.pb.protoprotoc-gen-go:unabletodetermineGoimportpathfor"pb.proto"Pleasespecifyeither:•a"go_package"optioni
- 解决前端vue项目在linux上,npm install,node-sass 安装失败的问题
_朱志强
前端vue.jslinux
Unabletosavebinary/var/lib/jenkins/workspace/xxx/node_modules/node-sass/vendor/linux-x64-72:Error:EACCES:permissiondenied,mkdir‘/var/lib/jenkins/workspace/x/node_modules/node-sass/vendor’这个是node-sass安
- Retrieval-based-Voice-Conversion-WebUI 使用指南
邢琛高
Retrieval-based-Voice-Conversion-WebUI使用指南Retrieval-based-Voice-Conversion-WebUIEasilytrainagoodVCmodelwithvoicedata<=10mins!项目地址:https://gitcode.com/gh_mirrors/ret/Retrieval-based-Voice-Conversion-We
- Retrieval-Based Voice Conversion WebUI 教程
蒋荔卿Lorelei
Retrieval-BasedVoiceConversionWebUI教程项目地址:https://gitcode.com/gh_mirrors/re/Retrieval-based-Voice-Conversion-WebUI1.项目介绍Retrieval-BasedVoiceConversionWebUI是一个基于VITS的简单易用的语音转换框架,特别适合制作“变声器”。它采用了顶级检索技术以
- 在ubuntu22.04上部署RagFlow一个深度文档理解的开源 RAG
BBM的开源HUB
AI专栏开源
RAGFlow是一个基于深度文档理解的开源RAG(Retrieval-AugmentedGeneration)引擎。它为任何规模的企业提供简化的RAG工作流程,结合LLM(大型语言模型)以提供真实的问答功能,并由来自各种复杂格式数据的有根据的引用提供支持。主要特点1、“品质进,品质出”基于深度文档理解,从具有复杂格式的非结构化数据中提取知识。找到“数据大海捞针”,字面上是无限的令牌。2、基于模板的
- Spark应用启动报错:Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
甘蓝聊Java
【更新中...】项目中的那些事sparkhadoop大数据winutils.exe
目录报错分析解决方式1:设置系统属性方式2:设置环境变量报错06-0809:47:32.608[main]WARNorg.apache.hadoop.util.NativeCodeLoaderL:62-Unabletoloadnative-hadooplibraryforyourplatform...usingbuiltin-javaclasseswhereapplicable06-0809:47
- 大模型RAG高阶面试指南:第一章:RAG绪论
强化学习曾小健3
大模型RAG高阶面试指南人工智能深度学习
第一章:RAG绪论1.1RAG的定义、背景与核心思想检索增强生成(RetrievalAugmentedGeneration,简称RAG)是一种结合了信息检索和文本生成的人工智能技术。它通过在生成过程中动态检索相关信息来增强大型语言模型的能力,从而提供更准确、更及时、更可靠的回答。RAG的核心思想是将"参数化知识"(存储在模型参数中的知识)与"非参数化知识"(存储在外部知识库中的知识)相结合,通过检
- 【AI论文精读3】RAG论文综述1-P3-检索器
AI完全体
AI论文解读人工智能机器学习深度学习自然语言处理RAG论文阅读论文笔记
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】P1,P2,P4,P5,P6三、检索器在RAG中,有效地从数据源中检索相关文档至关重要。涉及的关键问题包括检索源、检索粒度、检索的预处理以及选择相应的嵌入模型。3.1.检索源RAG依赖外部知识来增强LLM,而检索源(RetrievalSource)的类型(数据结构)和检索单元的粒度都会影响最终的生成结果。3.1.1.数据结构1.非结构化数
- 【git】错误
芋圆芋圆大芋圆
java
【成功解决】开代理unabletoaccess‘https://github.com/laigeoffer/pmhub.git/’:Recvfailure:Connectionwasreset
- Follow My Instruction and Spill the Beans: Scalable Data Extraction from Retrieval-Augmented Generat
UQI-LIUWJ
论文笔记论文阅读
iclr20255688检索增强生成(Retrieval-AugmentedGeneration,RAG)通过在测试阶段引入外部知识,提升了预训练模型的能力,实现了定制化适应。然而,本文研究发现,在检索上下文增强的语言模型(Retrieval-In-ContextRAGLMs)中存在数据存储泄露的风险。我们展示了攻击者可以利用语言模型的指令遵循能力,通过提示注入(promptinjection)轻
- 实现RAG融合以提升信息检索精准度
zbb258
javascriptpythonlangchain
在信息检索领域,如何从浩如烟海的信息中精准地获得答案是一个巨大的挑战。RAG(Retrieval-AugmentedGeneration)融合就是一种创新的解决方案。本文将介绍RAG融合的技术背景、核心原理,并提供多个代码片段,展示如何使用这一技术进行信息检索。技术背景介绍RAG融合结合了信息检索和生成式模型的优势。它可以通过生成多个查询,从而提高搜索结果的综合质量,并利用互惠排名融合方法对搜索结
- 从ConversationalRetrievalChain迁移到LCEL:代码实现与优势解析
技术背景介绍ConversationalRetrievalChain是一种结合检索增强生成和聊天历史的解决方案,允许用户与文档进行“对话”。虽然它提供了一体化的体验,但其内部实现复杂,给定的问答过程隐藏了问题重新表述的步骤。在这篇文章中,我们将探讨迁移到LCEL(LangChainEnhancedLanguage)实现的优势,以及如何进行代码迁移。核心原理解析LCEL通过清晰地拆分和管理各个组件,
- Grounding Language Model with Chunking‑Free In‑Context Retrieval (CFIC)
steven~~~
nlp语言模型人工智能自然语言处理
一读即懂这篇ACL2024文章介绍了CFIC,一种新的无块文档上下文检索方法,用于提升Retrieval‑Augmented Generation(RAG)任务的“证据定位”能力。问题是什么?传统RAG会先将文档分块(chunk)再检索,但这种分块会打断语义连贯性、引入噪音,并限制检索精度([aclanthology.org][1],[chatpaper.com][2])。CFIC的创新做法?跳过
- 论文精读:Hypercube-RAG: Hypercube-Based Retrieval-Augmented Generation for In-domain Scientific Question
大数据AI-ZRL
论文精读自然语言处理人工智能
研究背景研究问题:这篇文章要解决的问题是如何在领域特定的科学问答任务中,利用外部知识提高大型语言模型(LLMs)的准确性和效率。具体来说,传统的基于语义相似性的检索增强生成(RAG)方法在处理领域知识密集型任务时,难以返回简洁且高度相关的信息。研究难点:该问题的研究难点包括:如何在领域特定的任务中实现高效且准确的检索;如何在检索过程中提供可解释性;如何在保持高效的同时提高模型的准确性。相关工作:该
- 使用Elasticsearch实现高效的RAG系统:原理、实现与最佳实践
llzwxh888
elasticsearchjenkins大数据python
标题:使用Elasticsearch实现高效的RAG系统:原理、实现与最佳实践内容:使用Elasticsearch实现高效的RAG系统:原理、实现与最佳实践1.引言检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种强大的技术,可以显著提升大语言模型的表现。它通过从外部知识库检索相关信息来增强模型的输出。在这篇文章中,我们将探讨如何使用Elasticsearch
- Langchain学习笔记(五):检索增强生成(RAG)基础原理
zhangsan0933
LangChainlangchain学习笔记
注:本文是Langchain框架的学习笔记;不是教程!不是教程!内容可能有所疏漏,欢迎交流指正。后续将持续更新学习笔记,分享我的学习心得和实践经验。一.RAG系统的基本原理与架构检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种结合了检索系统和生成式AI的混合架构,旨在解决大语言模型(LLM)的知识时效性和幻觉问题。RAG通过从外部知识库检索相关信息,然后将这
- 论文略读:The Power of Noise: Redefining Retrieval for RAG Systems
UQI-LIUWJ
论文笔记人工智能
省流:在RAG中,噪声文档不仅没有对系统性能造成负面影响,反而能够显著提高系统的准确性1检索文档类型分类相关文档包含直接与查询相关的信息,提供直接回答或解释查询的标准数据。相关但不包含答案文档虽然没有直接回答查询,但在语义上或背景上与主题相关联。例如,如果有人问拿破仑的马的颜色,一份表述拿破仑妻子马的颜色的文档,虽然不包含正确信息,但与之高度相关。不相关文档与查询无关,代表了检索过程中的一种信息噪
- 基于深度学习的文本检索
SEU-WYL
深度学习dnn深度学习人工智能dnn
基于深度学习的文本检索文本检索(TextRetrieval)是指在大量文本数据中,根据用户的查询文本找到相关文档。基于深度学习的方法通过提取文本的高层次语义特征,实现了高效和准确的文本检索。深度学习在文本检索中的优势语义理解:深度学习模型能够捕捉文本中的复杂语义关系,相比传统的基于关键词匹配的方法更加准确。自动特征提取:深度学习方法可以自动从文本中提取有用的特征,无需手工设计特征。端到端学习:深度
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,