- K-means 算法的介绍与应用
小魏冬琅
matlab算法kmeans机器学习
目录引言K-means算法的基本原理表格总结:K-means算法的主要步骤K-means算法的MATLAB实现优化方法与改进K-means算法的应用领域表格总结:K-means算法的主要应用领域结论引言K-means算法是一种经典的基于距离的聚类算法,在数据挖掘、模式识别、图像处理等多个领域中得到了广泛应用。其核心思想是将相似的数据对象聚类到同一个簇中,而使得簇内对象的相似度最大、簇间的相似度最小
- 机器学习实战笔记5——线性判别分析
绍少阿
机器学习笔记可视化机器学习python人工智能
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
- 机器学习之 K-均值聚类算法
维生素¥
机器学习机器学习算法均值算法
K-均值(K-means)聚类算法是一种常用的无监督学习算法,用于将数据集划分为K个不同的簇。该算法通过迭代的方式将数据点分配到最近的簇中,并更新簇的中心,直到收敛为止。一、K-均值聚类算法的基本步骤:初始化K个簇的中心点(可以随机选择或者根据数据集初始化)。将每个数据点分配到最近的簇中。更新每个簇的中心点为该簇所有数据点的平均值。重复步骤2和3,直到簇的中心点不再改变或达到指定的迭代次数。二、K
- gps路径压缩算法
王建文go
算法
公司的gps点位特别多,导致数据存储以及查询都会造成一定的压力.所以我们需要使用gps路径压缩算法我调研了两种:k-means和Douglas-Peuckerk-means压缩的底层原理是:自定义簇的数量,假设是100个,那么就会计算所有gps点,把最相近的点,放在一个簇里,以此类推,计算出100个簇,然后每个簇计算出一个中心点,100簇的中心点也就是我们这段gps的压缩路径.Douglas-Pe
- Spark MLlib模型训练—聚类算法 K-means
不二人生
SparkML实战算法spark-ml聚类
SparkMLlib模型训练—聚类算法K-meansK-means是一种经典的聚类算法,广泛应用于数据挖掘、图像处理、推荐系统等领域。它通过将数据划分为(k)个簇(clusters),使得同一簇内的数据点尽可能相似,而不同簇之间的数据点差异尽可能大。ApacheSpark提供了K-means聚类算法的高效实现,支持大规模数据的分布式计算。本文将详细介绍K-means聚类算法的原理,并结合Spark
- Spark MLlib模型训练—聚类算法 Bisecting K-means
不二人生
SparkML实战算法spark-ml聚类
SparkMLlib模型训练—聚类算法BisectingK-means由于传统的KMeans算法的聚类结果易受到初始聚类中心点选择的影响,因此在传统的KMeans算法的基础上进行算法改进,对初始中心点选取比较严格,各中心点的距离较远,这就避免了初始聚类中心会选到一个类上,一定程度上克服了算法陷入局部最优状态。二分KMeans(BisectingKMeans)算法的主要思想是:首先将所有点作为一个簇
- 看demo学算法之 k-means
小琳ai
算法kmeans机器学习
大家好,这里是小琳AI课堂!今天我们要继续深入探讨k-means算法,这是一种在数据科学和机器学习中非常流行的聚类方法。✨k-means的四大步骤随机启动:先随便挑k个数据点当老大(簇中心)。分配小弟:每个数据点看看离哪个老大最近,然后加入那个团队。老大换人:每个团队重新算算中心位置,换个新老大。重复搞事:一直重复分配小弟和换老大的步骤,直到老大们换得差不多了或者到了预定的次数。k-means的闪
- 自然语言处理系列五十四》文本聚类算法》K-means文本聚类算法原理
陈敬雷-充电了么-CEO兼CTO
算法大数据人工智能自然语言处理nlpai人工智能kmeansAIGC聚类
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十四文本聚类算法》K-means文本聚类算法原理K-means文本聚类算法代码实战总结自然语言处理系列五十四文本聚类算法》K-means文本聚类算法原理K-means文本聚类是K-means算法的一个常用应用场景,下面介绍
- 【闲谈】聚类算法的金融数据挖掘应用及实践
爱写代码的July
其他金融大数据数据分析数据可视化python
目录一数据挖掘技术在金融领域应用概述二聚类算法介绍三聚类算法在金融数据挖掘中的应用1.聚类算法在客户细分领域的应用2.聚类算法在客户信用评估领域的应用四算法实践与个人体会1.聚类算法的实践——以k-means算法为例的银行客户数据集分析2.个人实际应用体会五总结与展望参考文献一数据挖掘技术在金融领域应用概述随着金融行业的不断发展,金融领域数字化转型程度愈发加深,计算机科学在金融领域的应用显得更为重
- 程序猿成长之路之数据挖掘篇——Kmeans聚类算法
zygswo
数据挖掘数据挖掘算法kmeans
Kmeans是一种可以将一个数据集按照距离(相似度)划分成不同类别的算法,它无需借助外部标记,因此也是一种无监督学习算法。什么是聚类用官方的话说聚类就是将物理或抽象对象的集合分成由类似的对象组成的多个类的过程。用自己的话说聚类是根据不同样本数据间的相似度进行种类划分的算法。这种划分可以基于我们的业务需求或建模需求来完成,也可以单纯地帮助我们探索数据的自然结构和分布。什么是K-means聚类用官方的
- 学习笔记1 三大聚类方法:K-means聚类、层次聚类、DBSCAN聚类
泠泠风来
聚类matlab
学习笔记1:三大聚类方法:K-means聚类、层次聚类、DBSCAN聚类文章目录前言一、K-means聚类操作过程二、层次聚类操作过程三、DBSCAN聚类操作过程总结前言在样本数量较多的情况下,可以通过聚类将样本划分为多个类,对每个类中单独使用模型进行分析和相关运算,亦可以探究不同类之间的相关性和主要差异。例如MathorCup2022年D题此外,可以借助https://www.naftaliha
- K-means聚类算法:从原理到实践的全面解读
一休哥助手
人工智能算法kmeans聚类
引言在当今数据驱动的时代,机器学习技术的发展已经成为各行各业的重要驱动力。在机器学习中,聚类算法是一类被广泛应用的技术之一。聚类旨在将数据集中的样本划分为不同的组,使得组内的样本相似度高,组间的相似度低。K-means聚类算法作为聚类算法中的一种经典方法,因其简单、高效的特性被广泛应用于各个领域。在本文中,我们将深入探讨K-means聚类算法,从基本原理到实际应用,以及算法的优化和实现方法。首先,
- K-means++算法
坐看云起时zym
K-means++简介K-means++算法是K-means算法的改进版本,由DavidArthur和SergeiVassilvitskii于2007年提出。传统的K-means算法需要在初始阶段在数据集中随机选择个点作为聚类中心,而K-means算法的聚类效果和运行时间很大程度上受初始聚类中心的选择的影响。K-means++算法对于初始聚类中心的选择进行了改进。K-means++选择聚类中心的思
- 聚类算法-Kmeans聚类
红米煮粥
机器学习kmeans聚类
一、K-means聚类介绍1.含义K-means聚类是一种非常流行的无监督学习算法,用于将数据点划分为预定义的K个簇(或组),其中每个簇由其质心(即簇中所有点的均值)定义。K-means算法的目标是使簇内的点尽可能紧密地聚集在一起,同时使不同簇之间的点尽可能远离。2.基本步骤:选择K值:首先,你需要决定将数据分成多少个簇,即K的值。K的选择通常是基于问题的上下文或通过一些启发式方法(如肘部法则)来
- 计算机毕业设计Hadoop+Spark知识图谱体育赛事推荐系统 体育赛事热度预测系统 体育赛事数据分析 体育赛事可视化 体育赛事大数据 机器学习 大数据毕业设计 大数据毕设 机器学习 人工智能
计算机毕业设计大全
开发技术前端:vue.js、element-ui、echarts后端:springboot、mybatis大数据:spark、hadoop数据库:mysql关系型数据库、neo4j图数据库算法:协同过滤推荐算法、MLP深度学习模型、SVD神经网络混合推荐算法、lstm模型、KNN、CNN、Sklearn、K-Means第三方平台:百度AI、阿里云短信、支付宝沙箱支付爬虫:Pythonchrome-
- 每天一个数据分析题(四百八十七)- 非监督学习
跟着紫枫学姐学CDA
数据分析题库数据分析学习数据挖掘
关于非监督学习,在K-means聚类分析使用的距离是()A.欧式距离B.绝对距离C.Minkowski距离D.笛卡尔距离数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据分析从业者刷题必备神器!
- 每天一个数据分析题(四百八十八)- 非监督学习
跟着紫枫学姐学CDA
数据分析题库数据分析学习数据挖掘
关于非监督学习,在K-means聚类分析使用的距离是()A.欧式距离B.绝对距离C.Minkowski距离D.笛卡尔距离数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据分析从业者刷题必备神器!
- 各种聚类方法的聚类思想介绍及其优缺点
QianMo-WXJ
知识补充聚类机器学习
聚类是一种无监督学习方法,旨在将数据集中的样本划分为若干个组,使得同一组内的样本相似度最大,而不同组之间的样本相似度最小。以下是几种常见的聚类方法及其思想、优缺点的介绍:1.K-means聚类聚类思想:K-means将数据分成K个簇,每个簇由一个中心(质心)代表。算法通过迭代优化,使得每个簇中的样本与质心的距离平方和最小。步骤:随机初始化K个质心。将每个样本分配到最近的质心。重新计算每个簇的质心。
- GWO优化kmeans
2301_78492934
机器学习算法人工智能matlabkmeans聚类
GWO(灰狼优化器)是一种群体智能优化算法,它模拟了灰狼的社会结构和狩猎行为。GWO算法通过模拟灰狼的等级制度、狩猎策略和搜索机制来寻找问题的最优解。而K-means是一种经典的聚类算法,用于将数据点划分为K个簇。将GWO优化算法应用于K-means聚类中,主要是为了解决K-means算法对初始簇中心敏感和容易陷入局部最优解的问题。以下是GWO优化K-means的原理和过程的详细介绍:1.GWO算
- 高斯混合模型聚类(GMM)matlab实现
唐维康
高斯混合模型聚类
GaussianMixtureModel,就是假设数据服从MixtureGaussianDistribution,换句话说,数据可以看作是从数个GaussianDistribution中生成出来的。实际上,我们在K-means和K-medoids两篇文章中用到的那个例子就是由三个Gaussian分布从随机选取出来的。实际上,从中心极限定理可以看出,Gaussian分布(也叫做正态(Normal)分
- 聚类分析入门:使用Python和K-means算法进行数据聚类
Evaporator Core
python
文章标题:聚类分析入门:使用Python和K-means算法进行数据聚类简介聚类分析是机器学习中的一个重要任务,它涉及将数据集中的样本分成多个类别或簇,使得同一簇内的样本相似度较高,不同簇之间的样本相似度较低。K-means算法是一种常用的聚类算法,它通过迭代优化簇的中心点来实现聚类。本文将介绍如何使用Python编程语言和Scikit-learn库实现K-means算法,以及如何对数据进行聚类分
- 基于聚类的点云背景分离算法python代码
love6a6
算法聚类python
点云背景分离是一个常用的计算机视觉任务,它旨在从点云数据中分离出感兴趣的物体。聚类是一种常用的方法,可以通过将相似的点聚集在一起来完成背景分离。下面是一个简单的基于K-Means聚类的点云背景分离的Python代码示例,使用的是scikit-learn库:importnumpyasnpfromsklearn.clusterimportKMeansfromsklearn.preprocessingi
- open3d k-means 聚类
云杂项
open3d持续更新kmeans聚类算法计算机视觉python机器学习
k-means聚类一、算法原理1、介绍2、算法步骤二、代码1、机器学习生成`kmeans`聚类2、点云学习生成聚类三、结果1、原点云2、机器学习生成`kmeans`聚类3、点云学习生成聚类四、相关链接一、算法原理1、介绍K-means聚类算法是一种无监督学习算法,主要用于数据聚类。该算法的主要目标是找到一个数据点的划分,使得每个数据点与其所在簇的质心(即该簇所有数据点的均值)之间的平方距离之和最小
- K-means(K均值聚类算法)算法笔记
Longlongaaago
机器学习机器学习kmeans算法
K-means(K均值聚类算法)算法笔记K-means算法,是比较简单的无监督的算法,通过设定好初始的类别k,然后不断循环迭代,将给定的数据自动分为K个类别。事实上,大家都知道K-means是怎么算的,但实际上,它是GMM(高斯混合模型)的一个特例,其而GMM是基于EM算法得来的,所以本文,将对K-means算法的算法思想进行分析。算法流程K-means算法的算法流程非常简单,可以从下图进行讲解(
- k-means 选择K的demo
你有啥子事
#!/usr/bin/envpython#-*-coding:utf-8-*-#@Time:2018/10/12下午5:29#@Author:liuchengwei#@Site:#@File:demo.py#@Software:PyCharmimportsysifsys.version[0]=='2':reload(sys)sys.setdefaultencoding("utf-8")fromge
- 2019-04-15派森学习第147天
每日派森
想要实现E-ACO的程序。先实现根据论文中的公式计算K-means的K值,在此之前写出给定K值后进行K-means聚类的程序。给定K=5后,聚类情况:K-means考虑到派工中的实际情况,维修站驻守的工人人数也不会太多,直接可以把工人人数设置为k。
- 数学建模:K-means聚类手肘法确定k值(含python实现)
图学习的小张
数学建模kmeans聚类
原理 当K-means聚类的k值不被指定时,可以通过手肘法来估计聚类数量。 在聚类的过程中,随着聚类数的增大,样本划分会变得更加精细,每个类别的聚合程度更高,那么误差平方和(SSE)会逐渐变小,误差平方和即该类重心与其内部成员位置距离的平方和。SSE是手肘法的核心指标,其公式为:SSE=∑i=1k∑p∈C∣p−mi∣2SSE=\sum_{i=1}^{k}\sum_{p\inC}|p-m_i|^
- 网络数据的K-means聚类算法
fpga和matlab
MATLAB板块5:网络通信★MATLAB算法仿真经验网络kmeans聚类
随着Internet的大规模普及、信息处理技术和数据处理技术的发展及企业信息化程度的提高,各种网络资源以爆炸式速度迅猛增长,现存的网络资源以数据库存储的形式为主,数据的形式以半结构化和结构化的形式存储。但是在网络技术迅猛发达的今天,数据库中的数据量更是以惊人的速度发展,就形成了数据量很大而对于有用的信息的发掘和利用成为一大难题的现象,也成为现在研究的热点问题。如何从激增的数据背后找到有价值的信息,
- 全连接神经网络实现手写数字识别
zeronose
codetips深度学习机器学习
可能我的学弟学妹们会搜到这篇文章,此时的你们正在为作业发愁,哈哈其他实现手写数字识别的方法:1.聚类(K-means)实现手写数字识别2.KNN实现手写数字识别3.卷积神经网络(CNN)实现手写数字识别4.聚类(K-means)实现手写数字识别-2实验数据是老师收集了所有人的手写数字图片,且经过处理将图像生成了.txt文件,如何生成点击这,如下图2.代码实现fromkeras.utilsimpor
- 机器学习原型聚类
黄粱梦醒
1.原型聚类原型聚类即“基于原型的聚类”(prototype-basedclustering),原型表示模板的意思,就是通过参考一个模板向量或模板分布的方式来完成聚类的过程,常见的K-Means便是基于簇中心来实现聚类,混合高斯聚类则是基于簇分布来实现聚类。1.2kmeans1.2.1基本原理K-means是一种常见的聚类算法,也叫k均值或k平均。通过迭代的方式,每次迭代都将数据集中的各个点划分到
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&