2.1 Softmax层
#include <algorithm> #include <vector> #include "caffe/layer.hpp" #include "caffe/util/math_functions.hpp" #include "caffe/vision_layers.hpp" namespace caffe { template <typename Dtype> void SoftmaxLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { softmax_axis_ = bottom[0]->CanonicalAxisIndex(this->layer_param_.softmax_param().axis()); top[0]->ReshapeLike(*bottom[0]); vector<int> mult_dims(1, bottom[0]->shape(softmax_axis_));// softmax_axis_ = 0 sum_multiplier_.Reshape(mult_dims); // class_num x 1 x 1 x1 Dtype* multiplier_data = sum_multiplier_.mutable_cpu_data(); caffe_set(sum_multiplier_.count(), Dtype(1), multiplier_data); outer_num_ = bottom[0]->count(0, softmax_axis_); // out_num_ = batchsize inner_num_ = bottom[0]->count(softmax_axis_ + 1); // inner_num = 1x1 vector<int> scale_dims = bottom[0]->shape(); scale_dims[softmax_axis_] = 1; // (1, 1, 1, 1); // inner_num = 1x1 scale_.Reshape(scale_dims); } template <typename Dtype> void SoftmaxLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { const Dtype* bottom_data = bottom[0]->cpu_data(); Dtype* top_data = top[0]->mutable_cpu_data(); Dtype* scale_data = scale_.mutable_cpu_data(); int channels = bottom[0]->shape(softmax_axis_); // channels = class_num int dim = bottom[0]->count() / outer_num_; // channels * inner_num caffe_copy(bottom[0]->count(), bottom_data, top_data); // We need to subtract the max to avoid numerical issues, compute the exp, // and then normalize. for (int i = 0; i < outer_num_; ++i) { // initialize scale_data to the first plane caffe_copy(inner_num_, bottom_data + i * dim, scale_data); for (int j = 0; j < channels; j++) { for (int k = 0; k < inner_num_; k++) { scale_data[k] = std::max(scale_data[k], bottom_data[i * dim + j * inner_num_ + k]); } } // subtraction caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels, inner_num_, 1, -1., sum_multiplier_.cpu_data(), scale_data, 1., top_data); // exponentiation caffe_exp<Dtype>(dim, top_data, top_data); // sum after exp caffe_cpu_gemv<Dtype>(CblasTrans, channels, inner_num_, 1., top_data, sum_multiplier_.cpu_data(), 0., scale_data); // division for (int j = 0; j < channels; j++) { caffe_div(inner_num_, top_data, scale_data, top_data); top_data += inner_num_; } } } template <typename Dtype> void SoftmaxLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { const Dtype* top_diff = top[0]->cpu_diff(); const Dtype* top_data = top[0]->cpu_data(); Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); Dtype* scale_data = scale_.mutable_cpu_data(); int channels = top[0]->shape(softmax_axis_); int dim = top[0]->count() / outer_num_; caffe_copy(top[0]->count(), top_diff, bottom_diff); for (int i = 0; i < outer_num_; ++i) { // compute dot(top_diff, top_data) and subtract them from the bottom diff for (int k = 0; k < inner_num_; ++k) { scale_data[k] = caffe_cpu_strided_dot<Dtype>(channels, bottom_diff + i * dim + k, inner_num_, top_data + i * dim + k, inner_num_); } // subtraction caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels, inner_num_, 1, -1., sum_multiplier_.cpu_data(), scale_data, 1., bottom_diff + i * dim); } // elementwise multiplication caffe_mul(top[0]->count(), bottom_diff, top_data, bottom_diff); } #ifdef CPU_ONLY STUB_GPU(SoftmaxLayer); #endif INSTANTIATE_CLASS(SoftmaxLayer); } // namespace caffe