FPGrowth算法实现

算法分析:http://ikeycn.iteye.com/blog/700740
算法实现:
/**
* FPGrowth算法的主要思想:
* 1. 构造频繁1项集:遍历初始数据集构造频繁1项集,并作为项头表,建立将指向fpTree节点对应元素的引用
* 2. 构造FPTree:再次遍历初始数据集,对于每一条事务中的元素,根据频繁1项集中元素的顺序排序,
* 由此建立FPTree,记录每条事务的节点在同一条路径上出再的节点次数;
* 3. 逆序遍历在步骤1中构造的项头表,根据其提供的引用指针,找出fpTree中由该节点到根节点的路径,
* 即生成每个频繁元素的条件模式基
* 4. 根据每个频繁元素对应的条件模式基,生成其对应的条件fpTree,并删除树中节点记数不满足给定的最小支持度的节点
* 5. 对于每一颗条件fpTree,生成所有的从根节点到叶子节点的路径,由路径中的集合生成其所有非空子集
* 所有这些非空子集和每一个频繁1项集中的元素共同构成了原始数据集中的频繁集
*
*/
package com.ustc.fpGrowth;

import java.util.ArrayList;
import java.util.List;

public class Item implements Comparable {

	private String value;
	private Item preItem; // 前继节点Item
	private List<Item> nextItem = new ArrayList<Item>(); // 后续节点Item

	private Item sibling; // 关联节点

	private int counter;

	public Item() {

	}

	public Item(String value) {
		this.value = value;
	}

	public void addCounter() {
		this.counter += 1;
	}

	public Item getSibling() {
		return sibling;
	}

	public void setSibling(Item sibling) {
		this.sibling = sibling;
	}

	public void addNextItem(Item item) {
		this.nextItem.add(item);
	}

	public List<Item> getNextItem() {

		return this.nextItem;
	}

	public String getValue() {
		return value;
	}

	public void setValue(String value) {
		this.value = value;
	}

	public Item getPreItem() {
		return preItem;
	}

	public void setPreItem(Item preItem) {
		this.preItem = preItem;
	}

	public int getCounter() {
		return counter;
	}

	public void setCounter(int counter) {
		this.counter = counter;
	}

	public int compareTo(Object o) {
		int value;
		Item i = (Item) o;

		if (this.counter > i.counter) {
			value = -1;
		} else if (this.counter == i.counter) {
			value = 0;
		} else {
			value = 1;
		}
		return value;
	}

}



package com.ustc.fpGrowth;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;

public class FPGrowth {

	private int minSup;

	/**
	 * @param args
	 */
	public static void main(String[] args) {
		FPGrowth fpg = new FPGrowth();
		fpg.setMinSup(1000);
		List<String> data = fpg.buildData("retail.dat");
		Item[] f1Items = fpg.buildF1Items(data);
		
		Map<String, List<String>> condBase;
		//Item fpTree = fpg.buildFPTree(data, f1Items);
		fpg.buildFPTree(data, f1Items);
		// fpg.fpGrowth();
/*
		fpg.printFPTree(fpTree);
		fpg.printF1Items(f1Items);*/
		condBase = fpg.buildCondBase(f1Items);
	//	fpg.printCondBase(condBase);
		Map<String, Item> condFPTree = fpg.buildCondFPTree(condBase);
	//	fpg.printCondFPTree(condFPTree);
		//输出频繁子集
		Map<String, List<List<String>>> fpSetMap = fpg.fpGrowth(condFPTree);
		fpg.printFPSet(fpSetMap);
		
		 
	}
	/**
	 * 输出频繁集
	 */
	public void printFPSet(Map<String, List<List<String>>> fpSetMap){
		List<List<String>> fpSet;
		
		Set<String> items = fpSetMap.keySet();
		for(String item : items){
			System.out.println(item);
			fpSet = fpSetMap.get(item);
			for (int i = 0; i < fpSet.size(); i++) {
				for (String str : fpSet.get(i)) {
				//	if(str != null && str.length() > 0){
						System.out.print(str + ", ");
				//	}
					
				}
				System.out.println(item);
			}
		}
	}
	
	// 输出fpTree
	public void printFPTree(Item root) {
		System.out.print(root.getValue() + ", " + root.getCounter() + " "
				+ root.getNextItem().size() + ": ");
		List<Item> subItems = root.getNextItem();
		if (subItems.size() != 0) {
			for (int i = 0; i < subItems.size(); i++) {
				printFPTree(subItems.get(i));
			}
			System.out.println();
		}

	}

	// 输出频繁1项集
	public void printF1Items(Item[] f1Items) {
		for (Item item : f1Items) {

			while ((item = item.getSibling()) != null) {
				System.out.print("item: " + item.getValue() + ": "
						+ item.getCounter() + " ,");
				if (item.getPreItem() != null) {
					System.out.println(item.getPreItem().getValue());
				}
			}
			System.out.println();
		}
	}

	// 输出条件模式基
	public void printCondBase(Map<String, List<String>> condBaseMap) {

		Set<String> items = condBaseMap.keySet();
		List<String> conBase;
		for (String item : items) {
			System.out.print("Item: " + item);
			conBase = condBaseMap.get(item);
			System.out.println(", " + conBase.size());
			for (String str : conBase) {
				System.out.println(str + " ");
			}
		}
	}

	// 输出条件fp树
	public void printCondFPTree(Map<String, Item> condFPTreeMap) {
		Set<String> items = condFPTreeMap.keySet();
		for (String item : items) {
			System.out.println("Item: " + item);
			this.printFPTree(condFPTreeMap.get(item));
		}
	}

	/**
	 * 1.构造数据集
	 */
	public List<String> buildData(String...fileName) {

		List<String> data = new ArrayList<String>();
		if(fileName.length !=0){
			File file = new File(fileName[0]);
			try {
				BufferedReader reader = new BufferedReader(new FileReader(file));
				String line;
				while( (line = reader.readLine()) != null){
					data.add(line);
				}
				
			} catch (FileNotFoundException e) {
				
				e.printStackTrace();
			} catch (IOException e) {
				
				e.printStackTrace();
			}
		}else{
			
			data.add("I1 I2 I5");
			data.add("I2 I4");
			data.add("I2 I3");
			data.add("I1 I2 I4");
			data.add("I1 I3");
			data.add("I2 I3");
			data.add("I1 I3");
			data.add("I1 I2 I3 I5");
			data.add("I1 I2 I3");
		}
		return data;
	}

	/**
	 * 2.构造频繁1项列表,同时作为树的项头表
	 */
	public Item[] buildF1Items(List<String> data) {
		List<Item> itemList = new ArrayList<Item>();
		Map<String, Item> resultMap = new HashMap<String, Item>();
		for (String trans : data) {

			String[] items = trans.trim().split(" ");
			int i;
			for (String item : items) {
				
				if(resultMap.get(item) == null){
					Item newItem = new Item();
					newItem.setValue(item);
					newItem.setCounter(1);
					resultMap.put(item, newItem);
				}else{
					resultMap.get(item).addCounter();
				}
			}
		}
		Set<String> keySet = resultMap.keySet();
		for(String key : keySet){
			itemList.add(resultMap.get(key));
		}
		List<Item> result = new ArrayList<Item>();
		// 把支持度小于minSup的项从列表中删除
		for (int i = 0; i < itemList.size(); i++) {
			if (itemList.get(i).getCounter() >= this.minSup) {
				result.add(itemList.get(i));
			}
		}

		// 对列表进行排序
		Item[] f1Items = result.toArray(new Item[0]);
		Arrays.sort(f1Items);

		return f1Items;
	}
	
	/**
	 * 3. 构造fpTree
	 */
	public Item buildFPTree(List<String> data, Item[] f1Items) {

		Item fpTree = new Item();
		List<Item> subItems;
		// 对每一条事务进行处理
		for (String trans : data) {

			// 得出每条事件中涉及的元素项
			String[] items = trans.trim().split(" ");
			// 对items中的元素按其在频繁1项集中出现次数排序
			items = sortItem(items, f1Items);
			// 把items的值加入到fpTree中
			subItems = fpTree.getNextItem();

			if (subItems.size() == 0) {
				this.addLeaf(fpTree, items, f1Items);
			} else {
				Item temp = null;

				for (int i = 0; i < items.length; i++) {
					int j = 0;
					int size = subItems.size();
					for (; j < subItems.size(); j++) {
						if (subItems.get(j).getValue().equals(items[i])) {
							temp = subItems.get(j);
							temp.addCounter();
							subItems = temp.getNextItem();
							break;
						}
					}

					if (j == size) {
						if (temp == null) {
							this.addLeaf(fpTree, Arrays.copyOfRange(items, i,
									items.length), f1Items);
						} else {
							this.addLeaf(temp, Arrays.copyOfRange(items, i,
									items.length), f1Items);
						}
						break;
					}
				}
			}

		}
		return fpTree;
	}
	
	/**
	 * 3.1 对元素数组根据其在f1中出面的频繁进行排序
	 * 
	 * @param items
	 * @return
	 */
	public String[] sortItem(String[] items, Item[] f1Items) {
		
		String[] temp = new String[f1Items.length];
		int i;
		for (String item : items) {
			for (i = 0; i < f1Items.length; i++) {
				if (item.equals(f1Items[i].getValue())) {
					temp[i] = item;
				}
			}
		}
		List<String> list = new ArrayList<String>();
		int j = 0;
		for (i = 0; i < temp.length; i++) {
			if (temp[i] != null) {
				list.add(temp[i]);
			}
		}
		
		return list.toArray(new String[0]);
	}

	/**
	 * 3.2 给FPTree的节点添加子节点序列
	 * 
	 * @param preItem
	 * @param items
	 */
	public void addLeaf(Item preItem, String[] items, Item[] f1Items) {
		if (items.length > 0) {
			Item item = new Item(items[0]);
			item.setCounter(1);
			item.setPreItem(preItem);
			preItem.addNextItem(item);

			for (Item i : f1Items) {
				if (i.getValue().equals(items[0])) {
					Item temp = i;
					while (temp.getSibling() != null) {
						temp = temp.getSibling();
					}
					temp.setSibling(item);
					break;
				}
			}
			if (items.length > 1) {
				addLeaf(item, Arrays.copyOfRange(items, 1, items.length),
						f1Items);
			}
		}

	}

	// 4.生成条件模式基
	public Map<String, List<String>> buildCondBase(Item[] f1Items) {

		Item item = null; // 横向处理时的当前节点
		Item preItem = null; // 横向处理的当前节点对应的纵向节点
		int counter = 0;
		StringBuffer data;

		Map<String, List<String>> condBaseMap = new HashMap<String, List<String>>();
		List<String> conditionBase; // 条件模式基
		// 逆向遍历频繁1项集(但不需处理其第一项)
		for (int i = f1Items.length - 1; i > 0; i--) {

			conditionBase = new ArrayList<String>();
			item = f1Items[i].getSibling();
			while (item != null) { // 横向处理

				counter = item.getCounter();
				preItem = item.getPreItem();
				data = new StringBuffer();
				while (preItem.getValue() != null) { // 纵向处理
					data.append(preItem.getValue() + " ");
					preItem = preItem.getPreItem();
				}
				for (int j = 0; j < counter; j++) {
					if (data.toString().trim() != ""
							&& data.toString().trim().length() > 0) {
						conditionBase.add(data.toString().trim());
					}
				}
				item = item.getSibling();
			}
			condBaseMap.put(f1Items[i].getValue(), conditionBase);
		}

		return condBaseMap;
	}

	// 5.生成条件FP树
	public Map<String, Item> buildCondFPTree(
			Map<String, List<String>> condBaseMap) {

		Map<String, Item> condFPTreeMap = new HashMap<String, Item>();
		List<String> condBase;
		Item condFPTree;
		Set<String> items = condBaseMap.keySet();
		for (String item : items) {
			condBase = condBaseMap.get(item);
			condFPTree = this
					.buildFPTree(condBase, this.buildF1Items(condBase));
			// 删除condFPTree树中节点出现次数少于最小支持度的点
			this.delLTminSup(condFPTree);
			condFPTreeMap.put(item, condFPTree);
		}

		return condFPTreeMap;
	}

	/**
	 * 5.1  删除树中节点计数小于最小支持度的节点
	 * 
	 * @param root
	 */
	public void delLTminSup(Item root) {
		List<Item> subItems = root.getNextItem();
		if (subItems.size() != 0) {
			for (int i = 0; i < subItems.size(); i++) {
				if (subItems.get(i).getCounter() < this.minSup) {
					subItems.remove(i);
				} else {
					delLTminSup(subItems.get(i));
				}
			}
		}
	}

	/**
	 * 6.产生频繁模式 根据前面生成的条件FP树,分别产生相应元素相关的频繁模式
	 */
	public Map<String,List<List<String>>> fpGrowth(Map<String, Item> condFPTreeMap) {
		
		List<List<String>> result;
		Map<String, List<List<String>>> resultMap = new HashMap<String, List<List<String>>>();
		Set<String> items = condFPTreeMap.keySet();
		Item condFPTree = null;
		List<String> pathList; // 一个条件fp树中所有的路径
		List<String> stack = new ArrayList<String>();
	
		for (String item : items) {
			
			pathList = new ArrayList<String>();
			condFPTree = condFPTreeMap.get(item);
			buildPath(stack, condFPTree, pathList);
			
			for(String str : pathList){
				result = new ArrayList<List<String>>();
				if(str.trim().length() != 0){
					String[] temp = str.trim().split(" ");
					List<String> nodeList = new ArrayList<String>();
					for(String t : temp){
						nodeList.add(t);
					}
					
					buildSubSet(nodeList, result);
					
					if(resultMap.get(item) == null){
						resultMap.put(item, result);
					}else{
						List<List<String>> list = resultMap.get(item);
						for( int  i = 0; i < result.size(); i++){
							list.add(result.get(i));
						}
						resultMap.put(item, list);
					}
				}	
			}
		}
		
		return resultMap;
	}

	// 6.1 生成树的每一条路径
	public void buildPath(List<String> stack, Item root, List<String> pathList) {

		if (root != null) {
			stack.add(root.getValue());
			if (root.getNextItem().size() == 0) {
				changeToPath(stack, pathList); // 把值栈中的值转化为路径
			} else {
				List<Item> items = root.getNextItem();
				for (int i = 0; i < items.size(); i++) {
					buildPath(stack, items.get(i), pathList);
				}
			}
			stack.remove(stack.size() - 1);
		}
	}

	/**
	 * 6.1.1 把值栈中的值转化为路径
	 * 
	 * @param path
	 * @param pathList
	 */
	public void changeToPath(List<String> path, List<String> pathList) {
		StringBuffer sb = new StringBuffer();
		for (int i = 0; i < path.size(); i++) {
			if (path.get(i) != null) {
				sb.append(path.get(i) + " ");
			}

		}
		pathList.add(sb.toString().trim());

	}
	/**
	 * 6.2 生成子集
	 * @param sourceSet
	 * @param result
	 */
	public void buildSubSet(List<String> sourceSet, List<List<String>> result) {

		if (sourceSet.size() == 1) {
			List<String> set = new ArrayList<String>();
			set.add(sourceSet.get(0));
			result.add(set);
		} else if (sourceSet.size() > 1) {

			buildSubSet(sourceSet.subList(0, sourceSet.size() - 1), result);
			int size = result.size();

			List<String> single = new ArrayList<String>();
			single.add(sourceSet.get(sourceSet.size() - 1));
			result.add(single);

			List<String> clone;
			for (int i = 0; i < size; i++) {
				clone = new ArrayList<String>();
				for (String str : result.get(i)) {
					clone.add(str);
				}
				clone.add(sourceSet.get(sourceSet.size() - 1));

				result.add(clone);
			}
		}
	}
	public void setMinSup(int minSup) {
		this.minSup = minSup;
	}
}

你可能感兴趣的:(算法,Blog,J#,FP)