Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 10539 | Accepted: 3756 |
Description
Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.
The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersection N.
The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).
Input
Output
Sample Input
4 4 1 2 100 2 4 200 2 3 250 3 4 100
Sample Output
450
某街区有R条道路,N个路口,道路可以双向通过,问1路口到N路口的次短距离同一条路可以走多次
用最短路做法Dijkstra算法,dist[]记录最短路,dist2[]记录次短路
#include <iostream> #include <vector> #include <queue> #include <string.h> #include <stdio.h> #include <algorithm> using namespace std; const int maxn=5005; const int inf=1e9; int N,R; struct edge { int to,cost; }; typedef pair<int ,int> P ;///first 是从1到second的最短路 second 是路口标号 vector<edge>G[maxn];///邻接表 int dist[maxn];///最短路 int dist2[maxn];///次短路 void solve() { priority_queue<P ,vector<P>,greater<P> >que; fill(dist,dist+N,inf); fill(dist2,dist2+N,inf); dist[0]=0; //dist2[0]=0; que.push(P(0,0)); while(!que.empty()) { P p=que.top();///优先队列 ,用.top que.pop(); int v=p.second ,d=p.first; if(dist2[v]<d)continue; for(int i=0; i<G[v].size(); i++) { edge e=G[v][i]; int d2=d+e.cost; if(dist[e.to]>d2) { swap(dist[e.to],d2); que.push(P(dist[e.to],e.to)); } if(dist2[e.to]>d2&&dist[e.to]<d2) { dist2[e.to]=d2; que.push(P(dist2[e.to],e.to)); } } } printf("%d\n",dist2[N-1]); } int main() { int from; while(cin>>N>>R) { edge now; for(int i=0;i<R;i++) { cin>>from>>now.to>>now.cost; from--; now.to--;///标号从 0-N-1!! G[from].push_back(now); swap(now.to,from); G[from].push_back(now); } solve(); } return 0; }