题目:
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
思路:
这题,数学上的解法就是C{m+n-2}{n-1}。
我们用学过的算法来解。动态规划无疑是非常简单的一种解法。
用DP[i][j]表示从开始到第i+1行j+1列共有的路径条数。
显然这题满足下列最优子结构:
DP[i][j]=DP[i-1][j]+DP[i][j-1] i,j>0;
DP[i][j]=1 i=1或j=1
最后DP[m-1][n-1]即为到finish处的路径条数。
时间复杂度:O(m*n)
实现如下:
class Solution { public: int uniquePaths(int m, int n) { vector<vector<int>> DP(m, vector<int>(n, 1)); for (int i = 1; i < m; i++) for (int j = 1; j < n; j++) { DP[i][j] = DP[i][j - 1] + DP[i - 1][j]; } return DP[m - 1][n - 1]; } };
最后补上数学解法:
class Solution { public: int uniquePaths(int m, int n) { if(m <=0 || n <= 0) return 0; long long res = 1; for(int i = n; i < m+n-1 ; i++){ res = res * i / (i- n + 1); } return (int)res; } };