LeetCode_Scramble String

Given a string  
 s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively. 
 

Below is one possible representation of s1 = "great":

    great
   /    \
  gr    eat
 / \    /  \
g   r  e   at
           / \
          a   t

To scramble the string, we may choose any non-leaf node and swap its two children.

For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".

    rgeat
   /    \
  rg    eat
 / \    /  \
r   g  e   at
           / \
          a   t

We say that "rgeat" is a scrambled string of "great".

Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".

    rgtae
   /    \
  rg    tae
 / \    /  \
r   g  ta  e
       / \
      t   a

We say that "rgtae" is a scrambled string of "great".

Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.

个人觉得这道题真是挺难的,做了两个晚上,最后看了别人的解法,思路在注释里:

class Solution {
public:
    /*************************************************************************
    **  思路:1)最初想到的是如果两个字符串能够通过题目给出的交换方式的到,
    **           那么对两个字符串进行排序,如果排序结果相同,则证明两个字符串
    **           就满足要求返回true,结果提交,果断贡献WA,原因是排序相等只是
    **           scramble 的必要非充分条件
    **           2)递归思路,字符串s1和s2是scramble的充分必要条件是:
    **               s1.compare(s2)=0   or
    **    ( s1.substr(0,i)和s2.substr(0,i)是scramble and  s1.substr(i+1,len-i)和s2.substr(i+1,len-i)是scramble)  or
    **   (s1.substr(0,i)和s2.substr(len-i+1,i)是scramble and s1.substr(i+1,len-i)和s2.substr(0,len-i)是scramble )
    **    由此对于两个字符串s1和s2存在len-1中分割选择,但是递归到下层时会存在大量重复计算
    **           3) 为了避免重复计算,使用动态规划,按照2)中描述的递归式,申
    **           请三维dp数组dp[len][len][len],第一维表示字符串s1的起点,第二维表
    **           示s2的起点,第三维表示字串的长度,最终结果表示为dp[0][0][len]
    *************************************************************************/
    bool isScramble(string s1, string s2) {
        int len=s1.size();
        if (len==0){
            return true;
        }
        vector <vector <vector <bool>>> dp(len,vector<vector<bool>>(len,vector<bool>(len,false)));
        //initialization dp
        for(int i=0;i<len;i++){
            for(int j=0;j<len;j++){
                if(s1[i]==s2[j]){
                    dp[i][j][0]=true;
                }
            }
        }
        //dp
        for(int l=2;l<=len;l++){
            for(int i=0;i+l<=len;i++){
                for(int j=0;j+l<=len;j++){
                    // k partations
                    for (int k=1;k<l;k++){
                        if ((dp[i][j][k-1]&&dp[i+k][j+k][l-k-1])||
                                        dp[i][j+k][l-k-1]&&dp[i+l-k][j][k-1]){
                            dp[i][j][l-1]=true;
                            break;
                        }
                    }
                }
            }
        }
        return dp[0][0][len-1];
    }
};


你可能感兴趣的:(LeetCode)