题目链接:uva 11796 - Dog Distance
将一只狗位移向量加到另一只上,即变成点到线段的最短距离。
#include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; const double pi = 4 * atan(1); const double eps = 1e-9; inline int dcmp (double x) { if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } inline double getDistance (double x, double y) { return sqrt(x * x + y * y); } struct Point { double x, y; Point (double x = 0, double y = 0): x(x), y(y) {} void read () { scanf("%lf%lf", &x, &y); } void write () { printf("%lf %lf", x, y); } bool operator == (const Point& u) const { return dcmp(x - u.x) == 0 && dcmp(y - u.y) == 0; } bool operator != (const Point& u) const { return !(*this == u); } bool operator < (const Point& u) const { return x < u.x || (x == u.x && y < u.y); } bool operator > (const Point& u) const { return u < *this; } bool operator <= (const Point& u) const { return *this < u || *this == u; } bool operator >= (const Point& u) const { return *this > u || *this == u; } Point operator + (const Point& u) { return Point(x + u.x, y + u.y); } Point operator - (const Point& u) { return Point(x - u.x, y - u.y); } Point operator * (const double u) { return Point(x * u, y * u); } Point operator / (const double u) { return Point(x / u, y / u); } }; typedef Point Vector; struct Line { double a, b, c; Line (double a = 0, double b = 0, double c = 0): a(a), b(b), c(c) {} }; namespace Punctual { double getDistance (Point a, Point b) { double x=a.x-b.x, y=a.y-b.y; return sqrt(x*x + y*y); } }; namespace Vectorial { /* 点积: 两向量长度的乘积再乘上它们夹角的余弦, 夹角大于90度时点积为负 */ double getDot (Vector a, Vector b) { return a.x * b.x + a.y * b.y; } /* 叉积: 叉积等于两向量组成的三角形有向面积的两倍, cross(v, w) = -cross(w, v) */ double getCross (Vector a, Vector b) { return a.x * b.y - a.y * b.x; } double getLength (Vector a) { return sqrt(getDot(a, a)); } double getAngle (Vector u) { return atan2(u.y, u.x); } double getAngle (Vector a, Vector b) { return acos(getDot(a, b) / getLength(a) / getLength(b)); } Vector rotate (Vector a, double rad) { return Vector(a.x*cos(rad)-a.y*sin(rad), a.x*sin(rad)+a.y*cos(rad)); } /* 单位法线 */ Vector getNormal (Vector a) { double l = getLength(a); return Vector(-a.y/l, a.x/l); } }; namespace Linear { using namespace Vectorial; Line getLine (double x1, double y1, double x2, double y2) { return Line(y2-y1, x1-x2, y1*(x2-x1)-x1*(y2-y1)); } Line getLine (double a, double b, Point u) { return Line(a, -b, u.y * b - u.x * a); } bool getIntersection (Line p, Line q, Point& o) { if (fabs(p.a * q.b - q.a * p.b) < eps) return false; o.x = (q.c * p.b - p.c * q.b) / (p.a * q.b - q.a * p.b); o.y = (q.c * p.a - p.c * q.a) / (p.b * q.a - q.b * p.a); return true; } /* 直线pv和直线qw的交点 */ bool getIntersection (Point p, Vector v, Point q, Vector w, Point& o) { if (dcmp(getCross(v, w)) == 0) return false; Vector u = p - q; double k = getCross(w, u) / getCross(v, w); o = p + v * k; return true; } /* 点p到直线ab的距离 */ double getDistanceToLine (Point p, Point a, Point b) { return fabs(getCross(b-a, p-a) / getLength(b-a)); } double getDistanceToSegment (Point p, Point a, Point b) { if (a == b) return getLength(p-a); Vector v1 = b - a, v2 = p - a, v3 = p - b; if (dcmp(getDot(v1, v2)) < 0) return getLength(v2); else if (dcmp(getDot(v1, v3)) > 0) return getLength(v3); else return fabs(getCross(v1, v2) / getLength(v1)); } /* 点p在直线ab上的投影 */ Point getPointToLine (Point p, Point a, Point b) { Vector v = b-a; return a+v*(getDot(v, p-a) / getDot(v,v)); } /* 判断线段是否存在交点 */ bool haveIntersection (Point a1, Point a2, Point b1, Point b2) { double c1=getCross(a2-a1, b1-a1), c2=getCross(a2-a1, b2-a1), c3=getCross(b2-b1, a1-b1), c4=getCross(b2-b1,a2-b1); return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0; } /* 判断点是否在线段上 */ bool onSegment (Point p, Point a, Point b) { return dcmp(getCross(a-p, b-p)) == 0 && dcmp(getDot(a-p, b-p)) < 0; } } namespace Triangular { using namespace Vectorial; double getAngle (double a, double b, double c) { return acos((a*a+b*b-c*c) / (2*a*b)); } double getArea (double a, double b, double c) { double s =(a+b+c)/2; return sqrt(s*(s-a)*(s-b)*(s-c)); } double getArea (double a, double h) { return a * h / 2; } double getArea (Point a, Point b, Point c) { return fabs(getCross(b - a, c - a)) / 2; } }; namespace Polygonal { using namespace Vectorial; double getArea (Point* p, int n) { double ret = 0; for (int i = 1; i < n-1; i++) ret += getCross(p[i]-p[0], p[i+1]-p[0]); return fabs(ret)/2; } }; using namespace Linear; const int maxn = 55; const double inf = 0x3f3f3f3f3f3f3f; int N, M; double VP, VQ, SP, SQ; Point P[maxn], Q[maxn]; void init () { scanf("%d%d", &N, &M); for (int i = 1; i <= N; i++) P[i].read(); for (int i = 1; i <= M; i++) Q[i].read(); SP = SQ = 0; for (int i = 2; i <= N; i++) SP += getLength(P[i] - P[i-1]); for (int i = 2; i <= M; i++) SQ += getLength(Q[i] - Q[i-1]); } int main () { int cas; scanf("%d", &cas); for (int kcas = 1; kcas <= cas; kcas++) { init (); int i = 2, j = 2; double ansMax = 0, ansMin = inf; Point a = P[1], b = Q[1]; while (i <= N && j <= M) { double tp = getLength(P[i] - a) / SP; double tq = getLength(Q[j] - b) / SQ; double t = min(tp, tq); //Vector va = (P[i] - a) * t / tp; Point v = b + (Q[j] - b) * t / tq + (a - P[i]) * t / tp; ansMax = max(ansMax, getLength(a - b)); ansMax = max(ansMax, getLength(a - v)); ansMin = min(ansMin, getDistanceToSegment(a, b, v)); a = a + (P[i] - a) * t / tp; b = b + (Q[j] - b) * t / tq; //a.write(), printf(" "), P[i].write(), printf("!\n"); //b.write(), printf(" "), Q[j].write(), printf("!!\n"); if (fabs(tp - t) < eps) i++; if (fabs(tq - t) < eps) j++; //printf("%d %d!\n", i, j); //printf("%lf %lf\n", ansMax, ansMin); } printf("Case %d: %lld\n", kcas, (long long)(ansMax - ansMin + 0.5)); } return 0; }