Matrix主要用于对平面进行平移(Translate),缩放(Scale),旋转(Rotate)以及斜切(Skew)操作。
为简化矩阵变换,Android封装了一系列方法来进行矩阵变换;其中包括:
set系列方法:setTranslate,setScale,setRotate,setSkew;设置,会覆盖之前的参数。
pre系列方法:preTranslate,preScale,preRotate,preSkew;矩阵先乘,如M' = M * T(dx, dy)。
post系列方法:postTranslate,postScale,postRotate,postSkew;矩阵后乘,如M' = T(dx, dy) * M。
通过将变换矩阵与原始矩阵相乘来达到变换的目的,例如:
平移(x'=x+tx;y'=y+ty):
缩放(x'=sx*x;y'=sy*y):
旋转(x'=cosβ*x-sinβ*y;y'=sinβ*x+cosβ*y):
选择需要用到如下的三角函数的公式:
①sin(α+β)=sinαcosβ+cosαsinβ
②cos(α+β)=cosαcosβ-sinαsinβ
公式①可以由单位圆方法或托勒密定理推导出来。
推导过程参见:http://blog.sina.com.cn/s/blog_58260f420100c03j.html
斜切(x'=x+k1*y;y'=k2*x+y):
//源码文件:external\skia\legacy\src\core\SkMatrix.cpp #define SK_Scalar1 (1.0f) #define kMatrix22Elem SK_Scalar1 typedef float SkScalar; #define SkScalarMul(a, b) ((float)(a) * (b)) enum { kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, kMPersp0, kMPersp1, kMPersp2 }; void SkMatrix::reset() { fMat[kMScaleX] = fMat[kMScaleY] = SK_Scalar1; //其值为1 fMat[kMSkewX] = fMat[kMSkewY] = fMat[kMTransX] = fMat[kMTransY] = fMat[kMPersp0] = fMat[kMPersp1] = 0; //其值,全为0 fMat[kMPersp2] = kMatrix22Elem; //其值为1 this->setTypeMask(kIdentity_Mask | kRectStaysRect_Mask); } void SkMatrix::setTranslate(SkScalar dx, SkScalar dy) { if (SkScalarToCompareType(dx) || SkScalarToCompareType(dy)) { fMat[kMTransX] = dx; //以新值dx覆盖原值,原值无效了 fMat[kMTransY] = dy; fMat[kMScaleX] = fMat[kMScaleY] = SK_Scalar1; //其值为1 fMat[kMSkewX] = fMat[kMSkewY] = fMat[kMPersp0] = fMat[kMPersp1] = 0; //其值,全为0 fMat[kMPersp2] = kMatrix22Elem; //其值为1 this->setTypeMask(kTranslate_Mask | kRectStaysRect_Mask); } else { this->reset(); } } bool SkMatrix::preTranslate(SkScalar dx, SkScalar dy) { if (this->hasPerspective()) { SkMatrix m; m.setTranslate(dx, dy); return this->preConcat(m); //矩阵的先乘运算 } if (SkScalarToCompareType(dx) || SkScalarToCompareType(dy)) { fMat[kMTransX] += SkScalarMul(fMat[kMScaleX], dx) + SkScalarMul(fMat[kMSkewX], dy); //先乘,需要矩阵运算过 fMat[kMTransY] += SkScalarMul(fMat[kMSkewY], dx) + SkScalarMul(fMat[kMScaleY], dy); this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); } return true; } bool SkMatrix::postTranslate(SkScalar dx, SkScalar dy) { if (this->hasPerspective()) { SkMatrix m; m.setTranslate(dx, dy); return this->postConcat(m); //矩阵的后乘运算 } if (SkScalarToCompareType(dx) || SkScalarToCompareType(dy)) { fMat[kMTransX] += dx; //后乘,直接加新值dx即可 fMat[kMTransY] += dy; this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask); } return true; } bool SkMatrix::preConcat(const SkMatrix& mat) { //矩阵的先乘运算(this在前) // check for identity first, so we don't do a needless copy of ourselves // to ourselves inside setConcat() return mat.isIdentity() || this->setConcat(*this, mat); //矩阵运算 } bool SkMatrix::postConcat(const SkMatrix& mat) { //矩阵的后乘运算(this在后) // check for identity first, so we don't do a needless copy of ourselves // to ourselves inside setConcat() return mat.isIdentity() || this->setConcat(mat, *this); //矩阵运算 }Matrix的初始值: