这个题目还是比较容易想到用状态dp来解的,但是状态的转移比较麻烦,并且加上有离散化,比较容易出错。
dp[i][j][k]表示覆盖前i列,用了j个矩形,当前覆盖状态为k的最优解。
k==1:覆盖1号格子
k==2:覆盖2号格子
k==3:覆盖1,2号格子,并且为同一个矩形
k==4:覆盖1,2号格子,并且为不同矩形
那么转移的时候就需要考虑,新建矩形,或者直接把当前矩形边长延伸。转移种类较多。
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn=1e3+9; bool a[3][maxn]; int x[maxn],y[maxn],f[maxn],g[maxn]; int dp[maxn][maxn][5]; struct D { int id,key; bool operator <(const D & xx) const { return key<xx.key; } }h[maxn]; int main() { // freopen("in.txt","r",stdin); int n,K,b; while(scanf("%d %d %d",&n,&K,&b)!=EOF) { memset(a,0,sizeof(a)); for(int i=1;i<=n;i++) { scanf("%d %d",&x[i],&y[i]); h[i].key=y[i],h[i].id=i; } sort(h+1,h+1+n); int top=0; f[h[1].id]=++top; g[top]=h[1].key; for(int i=2;i<=n;i++) { if(h[i].key!=h[i-1].key) ++top; f[h[i].id]=top; g[top]=h[i].key; } for(int i=1;i<=n;i++) a[x[i]][f[i]]=1; memset(dp,50,sizeof(dp)); dp[0][0][0]=0; for(int k=0;k<top;k++) { for(int i=0;i<=K;i++) for(int j=0;j<5;j++) { if(a[1][k+1]==0) dp[k+1][i+1][2]=min(dp[k+1][i+1][2],dp[k][i][j]+1); if(a[2][k+1]==0) dp[k+1][i+1][1]=min(dp[k+1][i+1][1],dp[k][i][j]+1); dp[k+1][i+1][3]=min(dp[k+1][i+1][3],dp[k][i][j]+2); dp[k+1][i+2][4]=min(dp[k+1][i+2][4],dp[k][i][j]+2); if(j==1) { if(a[2][k+1]==0) dp[k+1][i][j]=min(dp[k+1][i][j],dp[k][i][j]+g[k+1]-g[k]); else dp[k+1][i+1][4]=min(dp[k+1][i+1][4],dp[k][i][j]+g[k+1]-g[k]+1); } else if(j==2) { if(a[1][k+1]==0) dp[k+1][i][j]=min(dp[k+1][i][j],dp[k][i][j]+g[k+1]-g[k]); else dp[k+1][i+1][4]=min(dp[k+1][i+1][4],dp[k][i][j]+g[k+1]-g[k]+1); } else if(j==3) { dp[k+1][i][j]=min(dp[k+1][i][j],dp[k][i][j]+(g[k+1]-g[k])*2); } else if(j==4) { dp[k+1][i][j]=min(dp[k+1][i][j],dp[k][i][j]+(g[k+1]-g[k])*2); if(a[2][k+1]==0) dp[k+1][i][1]=min(dp[k+1][i][1],dp[k][i][j]+g[k+1]-g[k]); else dp[k+1][i+1][4]=min(dp[k+1][i+1][4],dp[k][i][j]+g[k+1]-g[k]+1); if(a[1][k+1]==0) dp[k+1][i][2]=min(dp[k+1][i][2],dp[k][i][j]+g[k+1]-g[k]); else dp[k+1][i+1][4]=min(dp[k+1][i+1][4],dp[k][i][j]+g[k+1]-g[k]+1); } } } int ans=1e9; for(int k=0;k<=K;k++) for(int i=0;i<5;i++) ans=min(ans,dp[top][k][i]+K-k); cout<<ans<<endl; } return 0; }