对所有的奶牛来说,花费在去派对的路上和返回农场的最长时间是多少?
为Ti。
输出占一行,为所有奶牛必须花费的最大时间。
Sample Input
4 8 2 1 2 4 1 3 2 1 4 7 2 1 1 2 3 5 3 1 2 3 4 4 4 2 3
Sample Output
10
Hint
本题需要求两次最短路,一次正向,一次反向...所以两次SPFA......感叹SPFA的高效啊~~~
#include <iostream> #include <cstdio> #include <cmath> #include <algorithm> #include <cstring> #include <vector> #include <queue> # define MAX 1005 # define INF 0x7FFFFFFF using namespace std; struct node { int e; int value; }; int n,m,visit[MAX]; void spfa(int v0,int dist[],vector<node> edge[])//模版spfa { int i; queue<int> q; for(i=1; i<=n; i++) dist[i] = INF; dist[v0] = 0; q.push(v0); visit[v0] = 1; while(! q.empty()) { int t = q.front(); q.pop(); visit[t] = 0; for(i=0; i<edge[t].size(); i++) { int e = edge[t][i].e; int value = edge[t][i].value; if(dist[e] > dist[t] + value) { dist[e] = dist[t] + value; if(visit[e] == 0) { q.push(e); visit[e] = 1; } } } } } int main() { int i,x,a,b,c; int dist1[MAX],dist2[MAX];//正反两次的最短距离 vector<node> edge1[MAX];//正向边 vector<node> edge2[MAX];//反向边 scanf("%d%d%d",&n,&m,&x); node tt; for(i=0; i<m; i++)//构造正反图 { scanf("%d%d%d",&a,&b,&c); tt.e = b; tt.value = c; edge1[a].push_back(tt); tt.e = a; tt. value = c; edge2[b].push_back(tt); } //两次SPFA memset(visit,0,sizeof(visit)); spfa(x,dist1,edge1); memset(visit,0,sizeof(visit)); spfa(x,dist2,edge2); int max = -1; for(i=1; i<=n; i++)//选出最大值 { if(max < dist1[i] + dist2[i] && dist1[i] != INF && dist2[i] != INF) max = dist1[i] + dist2[i]; } printf("%d\n",max); return 0; }
加油............................................!!!