String大数加减乘除(非负整数)

leetcode上一题使用String完成大数乘法,鉴于之前华为机试也考到过大数减法,这里做一个大数运算的专题。

说到底,大数运算考察的还是对运算的理解,我们完全可以通过模拟手算来进行。

注意string与int间的转换,string[] - '0' 变成int,int + '0' 变成 string[]。

由于我们希望能用下标与数字的位数对应起来,所以需要用 reverse(s.begin(), s.end()) 对String翻转一下存储,最后翻转回来,并将得到的结果的无用高位 '0' 删除掉,如果结果为 '0',还要特殊处理。



大数加法:

可以将两个字符串按位相加,注意进位,时间复杂度为O(N)。对于进位,我们遵循先按位相加,然后从低到高对于大于9的位进行进位处理。进位立即加到高一位,本位对10取余后再处理高一位,依次类推,后面可以看到我们对乘法虽然不是一次性加完再进位,而是从低到高一位一位加完进位,但思想是一样的。(需要小心的就是:1、注意string的范围,不能让下标越界;2、完整处理进位或借位)

string add(string num1, string num2) {
        string num(1000, '0');
        if(num1.empty() || num2.empty())
        {    
			num = "Data error!";
			return num;
        }    
        reverse(num1.begin(), num1.end());
        reverse(num2.begin(), num2.end());
        
        int i, len;
        for(i = 0; i < num1.size(); ++i)
        	num[i] = num1[i];

	for(i = 0; i < num2.size(); ++i)
		num[i] = num[i] - '0' + num2[i];
		
	len = max(num1.size(), num2.size());         //len取最大确保处理完全部进位
	for(i = 0; i < len; ++i)
	{
		num[i + 1] = num[i + 1] + (num[i] - '0') / 10;
		num[i] = (num[i] - '0') % 10 + '0';
	}
        
        reverse(num.begin(), num.end());
	if(num.find_first_not_of('0') == string::npos)
		num = '0';
        else 
		num.erase(num.begin(), num.begin() + num.find_first_not_of('0'));   //删除高位无用'0'

        
	return num;
}










大数减法:

判断两个数的大小后用大数减小数,最后添加符号,注意借位,时间复杂度O(N)。

string sub(string num1, string num2) {
        string num(1000, '0');
        if(num1.empty() || num2.empty())
        {    
			num = "Data error!";
			return num;
        }    
        int i, flag = 0;

	if(num1.find_first_not_of('0') == string::npos)
		num1 = '0';
        else 
		num1.erase(num1.begin(), num1.begin() + num1.find_first_not_of('0'));
	if(num2.find_first_not_of('0') == string::npos)
		num2 = '0';
        else 
		num2.erase(num2.begin(), num2.begin() + num2.find_first_not_of('0'));
		
	if(num2.size() > num1.size())                  //删除掉高位'0'后比较大小
		flag = 1;
	else if(num2.size() == num1.size())
	{
		cout << "I'm here." << endl;
		if(num1 == num2)
		{	
			num = '0';
			return num;
		}
		flag = num2 > num1;
		cout << flag << endl;
	}
        
	reverse(num1.begin(), num1.end());
        reverse(num2.begin(), num2.end());
		
	if(flag == 0)
	{
		for(i = 0; i < num1.size(); ++i)
			num[i] = num1[i];
		for(i = 0; i < num2.size(); ++i)
		{	
			num[i] = num[i] - num2[i] + '0';
			if(num[i] < '0')
			{
				num[i] = num[i] + 10;
				num[i + 1] = num[i + 1] - 1;
			}
		}
		while(num[i] < '0')             //处理余下的借位,因为以上循环中i只到num2.size()
		{
			num[i] = num[i] + 10;
			num[i + 1] = num[i + 1] - 1;
		}
	}
	else
	{
		for(i = 0; i < num2.size(); ++i)
			num[i] = num2[i];
		for(i = 0; i < num1.size(); ++i)
		{	
			num[i] = num[i] - num1[i] + '0';
			if(num[i] < '0')
			{
				num[i] = num[i] + 10;
				num[i + 1] = num[i + 1] - 1;
			}
		}
		while(num[i] < '0')
		{
			num[i] = num[i] + 10;
			num[i + 1] = num[i + 1] - 1;
		}
	}

	reverse(num.begin(), num.end());
	if(num.find_first_not_of('0') == string::npos)
		num = '0';
        else 
		num.erase(num.begin(), num.begin() + num.find_first_not_of('0'));
		
	if(flag == 1)
		num.insert(0, "-");
	return num;
}

正如上面讲的,这里,减法与加法采用了不同的策略,一个是处理完全部的加法后处理进位,一个是处理减法的同时处理借位,由于我们的下标不能越界,导致第二种方法可能不能处理到高位的借位或进位,需要额外处理,第一种方法由于我们已经将加法全部计算完成,只需处理进位,此时我们就可以选取位数大的那个数的位数作为小标的边界,这样就能处理完所有的进位,不需要额外操作。此外,加法进位最多到max(i, j)位,max(i, j)+1位是不可能进位的,对于减法(大减小),最高位是不需要借位的。




大数乘法:

第一个字符串的第i位乘以第二个字符串的第j位一定是结果的第i+j位,如果i+j已经有值,直接加上去就OK,记得处理进位。这样的算法的复杂度是O(N^2),利用FFT可以将算法优化到O(NlogN),感兴趣的读者可自行google。

处理进位时只需处理当前进位,将进位直接加到前一位,注意此时的被进位位可能大于9,也即此时该位存储的字符串不是'0'~'9',没关系,这些都只是中间过程,在下一次的运算中该位减 ‘0’ 就会得到 int 值,然后继续运算,进位也会被处理。注意 max(i) + max(j) + 1位 不可能产生进位!故最后不需要再处理额外的进位。

class Solution {
public:
    string multiply(string num1, string num2) {
        string num(1000, '0');
        
        if(num1.empty() || num2.empty())
        {    
		num = "Data error!";
		return num;
        }

            
        reverse(num1.begin(), num1.end());
        reverse(num2.begin(), num2.end());
        
        int i, j, tmp;
        for(i = 0; i < num1.size(); ++i)
            for(j = 0; j < num2.size(); ++j)
            {
                tmp = (num1[i] - '0') * (num2[j] - '0');
                num[i + j + 1] = num[i + j + 1] - '0' + (num[i + j] - '0' + tmp) / 10 + '0';       //注意这一句与下面那句的顺序。。
                num[i + j] = (num[i + j] - '0' + tmp) % 10 + '0';
            }
        
        reverse(num.begin(), num.end());
        if(num.find_first_not_of('0') == string::npos)
            num = '0';
        else    
            num.erase(num.begin(), num.begin() + num.find_first_not_of('0'));
        
        return num;
    }
};





大数除法:

我们将除法看作是减法来处理,用被减数不断的减去减数,记录减的次数即是商的值。但是我们当然不能一个一个减,因为如果有10000000/1这种情况不是要减到猴年马月。我们可以记录被减数和减数的位数之差len,将减数扩大10^len倍,然后依次去减,一旦被减数小于减数时,将减数减小10倍,直至到原值。依次循环,去掉前置0,得出结果。实际就是模拟手算。具体实现参考:http://blog.csdn.net/nk_test/article/details/48912763(NK_test的博客)

你可能感兴趣的:(String大数加减乘除(非负整数))