Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2.
For example,
Given:
s1 = “aabcc”,
s2 = “dbbca”,
When s3 = “aadbbcbcac”, return true.
When s3 = “aadbbbaccc”, return false.
其实拿到这类动态规划的题目, 还是蛮虚的, 因为自己的对动态规划的掌握还是有所欠缺的。
我们可以设 f[i,j,k]表示s1[0:i],s2[0:j],s3[0:k]是否匹配 , 那么我们可以有转移方程:
class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
int len_s1 = s1.size();
int len_s2 = s2.size();
int len_s3 = s3.size();
if (len_s1 + len_s2 != len_s3)
return false;
vector<vector<bool>> vec(len_s1 + 1, vector<bool>(len_s2 + 1, false));
vec[0][0] = true;
for (int i = 1; i != len_s1 + 1; i++){
vec[i][0] = vec[i - 1][0] && s1[i - 1] == s3[i - 1];
}
for (int i = 1; i != len_s2 + 1; i++){
vec[0][i] = vec[0][i - 1] && s2[i - 1] == s3[i - 1];
}
for (int i = 1; i != len_s1 + 1; i++){
for (int j = 1; j != len_s2 + 1; j++){
vec[i][j] = vec[i - 1][j] && s1[i - 1] == s3[i + j - 1]
|| vec[i][j - 1] && s2[j - 1] == s3[i + j - 1];
}
}
return vec[len_s1][len_s2];
}
};
这个解法的思路和我们的思路基本是一致的
bool isInterleave(string s1, string s2, string s3) {
if(s3.length() != s1.length() + s2.length())
return false;
bool table[s1.length()+1][s2.length()+1];
for(int i=0; i<s1.length()+1; i++)
for(int j=0; j< s2.length()+1; j++){
if(i==0 && j==0)
table[i][j] = true;
else if(i == 0)
table[i][j] = ( table[i][j-1] && s2[j-1] == s3[i+j-1]);
else if(j == 0)
table[i][j] = ( table[i-1][j] && s1[i-1] == s3[i+j-1]);
else
table[i][j] = (table[i-1][j] && s1[i-1] == s3[i+j-1] ) || (table[i][j-1] && s2[j-1] == s3[i+j-1] );
}
return table[s1.length()][s2.length()];
}
/* If we expand the two strings s1 and s2 into a chessboard, then this problem can be transferred into a path seeking problem from the top-left corner to the bottom-right corner. The key is, each cell (y, x) in the board corresponds to an interval between y-th character in s1 and x-th character in s2. And adjacent cells are connected with like a grid. A BFS can then be efficiently performed to find the path. Better to illustrate with an example here: Say s1 = "aab" and s2 = "abc". s3 = "aaabcb". Then the board looks like o--a--o--b--o--c--o | | | | a a a a | | | | o--a--o--b--o--c--o | | | | a a a a | | | | o--a--o--b--o--c--o | | | | b b b b | | | | o--a--o--b--o--c--o Each "o" is a cell in the board. We start from the top-left corner, and try to move right or down. If the next char in s3 matches the edge connecting the next cell, then we're able to move. When we hit the bottom-right corner, this means s3 can be represented by interleaving s1 and s2. One possible path for this example is indicated with "x"es below: x--a--x--b--o--c--o | | | | a a a a | | | | o--a--x--b--o--c--o | | | | a a a a | | | | o--a--x--b--x--c--x | | | | b b b b | | | | o--a--o--b--o--c--x Note if we concatenate the chars on the edges we went along, it's exactly s3. And we went through all the chars in s1 and s2, in order, exactly once. Therefore if we view this board as a graph, such path finding problem is trivial with BFS. I use an unordered_map to store the visited nodes, which makes the code look a bit complicated. But a vector should be enough to do the job. Although the worse case timeis also O(mn), typically it doesn't require us to go through every node to find a path. Therefore it's faster than regular DP than average. */
struct MyPoint {
int y, x;
bool operator==(const MyPoint &p) const {
return p.y == y && p.x == x;
}
};
namespace std {
template <>
struct hash<MyPoint> {
size_t operator () (const MyPoint &f) const {
return (std::hash<int>()(f.x) << 1) ^ std::hash<int>()(f.y);
}
};
}
class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
if (s1.size() + s2.size() != s3.size()) return false;
queue<MyPoint> q;
unordered_set<MyPoint> visited;
bool isSuccessful = false;
int i = 0;
q.push(MyPoint { 0, 0 });
q.push(MyPoint { -1, -1 });
while (!(1 == q.size() && -1 == q.front().x)) {
auto p = q.front();
q.pop();
if (p.y == s1.size() && p.x == s2.size()) {
return true;
}
if (-1 == p.y) {
q.push(p);
i++;
continue;
}
if (visited.find(p) != visited.end()) { continue; }
visited.insert(p);
if (p.y < s1.size()) { // down
if (s1[p.y] == s3[i]) { q.push(MyPoint { p.y + 1, p.x }); }
}
if (p.x < s2.size()) { // right
if (s2[p.x] == s3[i]) { q.push(MyPoint { p.y, p.x + 1 }); }
}
}
return false;
}
};