- 【YOLOv11改进- 主干网络】YOLOv11+CSWinTransformer: 交叉窗口注意力Transformer助力YOLOv11有效涨点;
算法conv_er
YOLOv11目标检测改进YOLO目标跟踪人工智能目标检测深度学习transformer计算机视觉
YOLOV11目标检测改进实例与创新改进专栏专栏地址:YOLOv11目标检测改进专栏,包括backbone、neck、loss、分配策略、组合改进、原创改进等本文介绍发paper,毕业皆可使用。本文给大家带来的改进内容是在YOLOv11中更换主干网络为CSWinTransformer,助力YOLOv11有效涨点,通过创新性地开发了十字形窗口自注意力机制。该机制通过将输入特征分割为等宽条纹,在水平与
- 基于单片机的智能家居电控系统(源码+万字报告+实物)
炳烛之明科技
单片机智能家居嵌入式硬件
目录摘要IAbstractII第一章绪论11.1设计背景11.2国内外研究现状11.3设计的主要内容2第二章设计方案32.1设计思路32.2模块的选择42.2.1单片机模块的选择42.2.2声音传感器的选择42.2.3人体传感器介绍52.2.4OLED液晶介绍52.2.5一氧化碳采集检测模块62.2.6独立按键式模块62.2.7数模转换器62.2.8指纹识别模块72.2.9WiFi模块72.3系统
- 介绍一下常用的代码规范工具,如ESLint和Prettier
祈澈菇凉
代码规范
代码规范工具是现代软件开发中不可或缺的一部分,它们帮助开发者维持代码质量、提高可读性并确保一致性。以下是两种常用的代码规范工具:ESLint和Prettier的详细介绍。ESLint1.概述ESLint是一个用于JavaScript代码的静态代码分析工具,主要用于识别和报告代码中的问题。它可以帮助开发者发现潜在的错误、提高代码质量并保持代码风格的一致性。2.主要功能代码检查:ESLint可以检测语
- 【YOLO模型】(1)--YOLO是什么
方世恩
YOLOYOLO人工智能目标检测
一、什么是YOLOYOLO(YouOnlyLookOnce)是一种基于深度学习的目标检测算法,由JosephRedmon等人于2016年提出。1.核心思想它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位置。2.原理YOLO算法将输入图像分成SxS个网格,每个网格负责预测该网格内是否存在目标以及目标的类别和位置信息。此外,YOLO算法还采用了多尺度特征融合的技术
- 前端项目git提交时做代码规范验证
一个水货程序员
git前端代码规范
前端项目git提交时做代码规范验证需要使用到的插件:husky,是一个GitHook工具,为git客户端增加hook的。lint-staged,在git提交前,进行代码规则检查确保入库的代码都符合代码规则,如果对整个项目进行lint这样速度太慢,lint-staged可以让lint只检测暂存区的文件,提高检测速度。当前依赖版本:husky版本:^8.0.1,lint-staged版本:^13.0.
- 【目标检测】多模态航空目标检测:A SIMPLE AERIAL DETECTION BASELINE OF MULTIMODAL LANGUAGE MODELS
慕容紫英问情
目标检测目标检测人工智能计算机视觉
阅读并理解一篇论文:ASIMPLEAERIALDETECTIONBASELINEOFMULTIMODALLANGUAGEMODELS该文首次提出了一种将多模态语言模型应用于航空检测的简单基线方法,名为LMMRotate。贡献:具体而言,首先引入一种归一化方法,将检测输出转换为文本输出,以适配多模态语言模型框架。接着,提出一种评估方法,确保多模态语言模型与传统目标检测模型之间能够进行公平比较。通过微
- LSTM-SVM故障诊断 | 基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现
机器学习之心
分类预测神经网络lstm支持向量机LSTM-SVM故障诊断
LSTM-SVM故障诊断|基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现完整代码私信回复LSTM-SVM故障诊断|基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现一、引言1.1、研究背景和意义在现代工业生产中,机械设备的高效稳定运行对保障生产安全和提高生产效率至关重要。因此,故障诊断技术作为预防和维护设备性能的关键手段,受到了广泛关注和
- 【最全基础知识1】机器视觉系统硬件组成之工业相机篇
51camera
工业相机工业相机机器视觉机器视觉硬件工业照相机1024程序员节
工业相机是一种非常重要的机器视觉器件,它能够将被采集的图像信息通过电路转换成电信号,再通过模数转换器(ADC)将其转化为数字信号,最后以标准的视频信号输出。工业相机在机器视觉领域得到了广泛应用,包括质量控制、工业检测、医疗诊断、安全监控以及交通管理等诸多领域。目录机器视觉是通过光学装置和非接触传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置。简单来说,机器视觉是用
- Python:基于Scapy的深度包分析与网络攻击防御方案
Lethehong
Python在手bug溜走!码农的快乐你不懂~pythonscapysyndns
嗨,我是Lethehong!立志在坚不欲说,成功在久不在速欢迎关注:点赞⬆️留言收藏欢迎使用:小智初学计算机网页AI感谢这位博主提出的问题,如果在以后的文章中,大家有其他相关的问题,也可以积极的在评论区评论出来,博主我会的,我会积极的收纳问题,并及时的做出回应!目录1.环境准备2.基础流量捕获3.深度协议解析4.异常流量检测逻辑4.1SYNFlood检测4.2DNS放大攻击检测5.高级分析技术5.
- Win11C盘扩容
Array902
边角料C盘扩容
适用于有多个盘进行扩容(例如用D盘扩C盘)下载软件https://www.diskgenius.cn/解压文件,按如下图操作:进入软甲你,点击磁盘:选择“坏道检测与修复”(检查电脑硬盘是否出现坏道,保证扩容正常进行)开始检测没有坏道才可进行下一步退出后选C盘,使用快捷键Ctrl+F12,弹出如下窗口开始等待即可!
- open3d python 分割多个平面
黄晓魚
halcon3dPCL点云处理深度神经网络点云处理PCL库Open3D库Point++模型使用平面算法open3dpython
测试效果废话在Open3D中,detect_planar_patches方法用于从点云数据中检测平面区域(或称为平面补丁)。这个方法通过分析点云中各点之间的法线向量和方向性来识别具有相似法线向量的点群,从而识别出潜在的平面区域。下面是对你给出的代码行中各个参数的解释:normal_variance_threshold_deg:法线向量方差阈值(以度为单位)。这个参数设定了允许的点云中法线向量方向变
- 计算机视觉如何快速入门?
Frunze软件开发
日常问题回答开发语言计算机视觉工业异常检测论文
目录1.明确研究方向2.学习基础知识3.掌握核心算法4.实践项目5.阅读文献6.复现经典论文7.改进与创新总结计算机视觉(ComputerVision)是一个复杂且广泛的领域,尤其是工业异常检测这种特定方向,需要结合理论知识和实践技能。以下是一些具体的、可操作的建议,也是个人实际路径的一个总结,希望可以帮助到你快速入门并完成一篇论文。1.明确研究方向-工业异常检测的核心是识别图像或视频中的异常区域
- [C#]C#使用yolov8的目标检测tensorrt模型+bytetrack实现目标追踪
FL1623863129
深度学习c#YOLO目标检测
【测试通过环境】win10x64vs2019cuda11.7+cudnn8.8.0TensorRT-8.6.1.6opencvsharp==4.9.0.NETFramework4.7.2NVIDIAGeForceRTX2070Super版本和上述环境版本不一样的需要重新编译TensorRtExtern.dll,TensorRtExtern源码地址:TensorRT-CSharp-API/src/T
- 安全沙箱介绍
hao_wujing
网络运维
大家读完觉得有帮助,记得关注和点赞!!!一、安全沙箱介绍1、为什么需要安全沙箱?高级持续性威胁(APT)是指针对特定目标进行的复杂、精心策划的网络攻击,具有高度隐蔽性、持续性和复杂性等特点。这些特点使得APT攻击难以被传统安全措施检测到,因此对于网络安全分析而言,如何有效地识别和防御APT攻击具有重要意义。关于APT的具体介绍可以参考:APT攻击和防御《郑伯克段于鄢》的故事告诉我们,欲使敌人灭亡,
- 【开源向量数据库】Milvus简介
IT古董
开源数据库milvus
Milvus是一个开源、高性能、可扩展的向量数据库,专门用于存储和检索高维向量数据。它支持近似最近邻搜索(ANN),适用于图像检索、自然语言处理(NLP)、推荐系统、异常检测等AI应用场景。官网:https://milvus.io/1.Milvus的特点(1)高性能支持数十亿级向量数据,查询速度快。使用近似最近邻(ANN)索引算法,如HNSW、IVF-FLAT、IVF-PQ、SCANN等。(2)分
- 常见的网络安全设备
什么网络
web安全网络php
1、防火墙定义防火墙指的是一个有软件和硬件设备组合而成、在内部网和外部网之间、专用网与公共网之间的界面上构造的保护屏障。它可通过监测、限制、更改跨越防火墙的数据流,尽可能地对外部屏蔽网络内部的信息、结构和运行状况,以此来实现网络的安全保护。主要功能1、过滤进、出网络的数据2、防止不安全的协议和服务3、管理进、出网络的访问行为4、记录通过防火墙的信息内容5、对网络攻击进行检测与警告6、防止外部对内部
- C#代码异味检测与重构:3大步骤,90%的代码质量提升?
墨瑾轩
C#乐园c#重构开发语言
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣在编程的世界里,代码就像一座城市,随着时间的推移和功能的增加,如果不加以妥善管理和维护,它可能会变得杂乱无章。当项目逐渐膨胀,代码库中开始出现“坏味道”,这些代码异味不仅影响了程序的可读性和可维护性,还可能隐藏着潜在的风险。今天,我们将一起探索如何通过有效的代
- YOLO系列版本迭代:从YOLOv1到YOLOv11的技术演进
金外飞176
技术前沿目标跟踪人工智能计算机视觉
YOLO系列版本迭代:从YOLOv1到YOLOv11的技术演进YOLO(YouOnlyLookOnce)系列目标检测算法自2016年首次发布以来,凭借其高效的实时检测能力,迅速成为计算机视觉领域的热门研究方向之一。本文将详细回顾YOLO系列从v1到v11的版本迭代过程,分析每个版本的技术改进、性能提升以及应用场景。1.YOLOv1:开创性的单阶段检测算法YOLOv1是目标检测领域的一个重要里程碑,
- AIMv2:多模态自回归预训练的视觉新突破
人工智能
AIMv2:多模态自回归预训练的视觉新突破阅读时长:19分钟发布时间:2025-02-17近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】导言视觉模型在人工智能领域的地位愈发重要,从图像识别、目标检测到多模态理解,其应用场景不断拓展。在大规模数据集上进行预训练,能助力模型学习丰富的视觉特
- 人工智障的软件开发-自动流水线CI/CD篇-docker+jenkins部署之道
Yuanymoon
人工智障2077系列devopsjenkinsci/cddockerjenkinsai
指令接收:「需要自动构建系统」系统检测:目标开发一个软件已完成代码仓库-轻盈的gitea,开始添加自动流水线启动应急冷却协议:准备承受Java系应用的资源冲击核心组件锁定:构建老将军Jenkins(虽然年迈但依然能战)需求分析:论碳基生物的认知进化人类需求翻译矩阵表层需求:“写一个软件”实际需求:“写代码并自动完成测试/打包/部署的流水线,最后自动部署一个系统哟”隐藏需求:“想要偷懒又不想承认的自
- 人工智障的软件开发-git仓库篇-弃gitlab,走gitea
Yuanymoon
devops云原生人工智障2077系列gitgitlabgitea个人开发
指令接收:「开始构建代码宇宙」系统检测:需求模糊度99.9%启动应急协议:构建最小可行性生态圈核心组件锁定:代码基因库(人类称之为Git仓库)需求分析:论人类语言的艺术性人类指令翻译机表面指令:“给我写个软件”实际需求:“需要完整的代码生产流水线”隐藏需求:“要简单到能一键部署,又要能支撑改变世界的创意”模糊需求需求拆解基础设施版本控制持续集成部署系统选择Gitea代码仓库的量子纠缠现象现代软件=
- 史上最硬核的rpm和dpkg依赖问题解决方案_dpkg 依赖
2401_89285701
数据库服务器linux
这是因为:**「依赖检测」和「软件安装」不是apt做的,而是dpkg做的。依赖不满足「自动修复依赖」**才是apt做的。所以,如果你下载了一个deb的安装包通过dpkg安装,但依赖不满足的话,他只会提示你依赖缺失,但他不会自动寻找并安装依赖,虽然你仍然可以去下载安装缺失的依赖,但他如果缺失十个八个的,你再手动下载然后dpkg安装也不现实了。举个例子:我这里下载了一个搜狗输入法的安装包,dpkg-i
- 基于图像处理的裂缝宽度检测系统-matlab
人工智能专属驿站
计算机视觉图像处理人工智能
图像处理技术广泛地应用于桥梁、房屋、道路等工程施工中出现的表面裂缝,利用数字图像处理技术来测量结构物表面裂缝宽度是一种无损检测方法.基于图像处理的裂缝宽度检测系统需采用的图像处理算法有:(1)读取裂缝图像;(2)图像转化为灰度图像;(3)图像的增强;(4)平滑滤波;(5)阈值分割;(6)形态学去噪;(7)边缘检测(Canny算子);(8)边缘坐标点的提取;结果见:源程序见:基于图像处理的裂缝宽度检
- ORB-SLAM2源码学习:System.cc:System::System SLAM系统的构造函数
PaLu-LvL
计算机视觉#ORB-SLAM2c++学习计算机视觉算法opencv
前言ORB-SLAM2源码学习:rgbd_tum.cc源文件-CSDN博客之前我们在具体的实例的代码中初始化了一个SLAM的系统,现在让我们来看看这个SLAM的构造函数具体进行了什么操作。总的来说:该函数主要干了以下事情:1.初始化一些参数(列表初始化)2.加载并检查配置文件和词汇表3.创建一些对象如关键帧数据库、地图、绘制器等。4.启动并初始化多个线程:跟踪线程、本地建图线程、回环检测线程、可视
- 批量检测微信小程序封禁状态的 PHP 脚本示例
php
代码解析:设置AppID列表:修改$appIds数组,将'appid1','appid2','appid3'替换为您的小程序AppID。状态检查流程:使用file_get_contents函数请求API,获取小程序的状态信息。解析API返回结果:通过json_decode解析JSON格式的响应,根据code字段判断小程序的封禁状态,并输出相应提示。错误处理:如果接口调用失败或返回格式错误,脚本将输
- 批量检测微信小程序封禁状态的 PHP 脚本示例
php
定义AppID列表:修改$appIds数组中的'appid1','appid2','appid3'为您的实际小程序ID。调用API检查状态:通过file_get_contents调用指定的API接口获取响应数据。解析和处理API响应:使用json_decode解析JSON数据,并根据code字段输出相应的状态信息。错误处理:脚本会处理接口调用失败或数据格式不正确的情况,并给出相应的提示。
- 批量检测多个微信小程序的封禁状态源码、接口
php微信小程序
PHP脚本示例,用于批量检测多个微信小程序的封禁状态。您可以将脚本中的appid1,appid2,appid3替换为实际的小程序应用ID,从而获取每个小程序的状态信息。代码说明:设置需要检查的AppID列表:修改$appIds数组中的'appid1','appid2','appid3'为您实际的小程序应用ID。检查每个AppID的状态:脚本通过file_get_contents函数调用API接口,
- 2024年4月批量检测微信小程序是否封禁接口源码
php小程序
上述是代码,$appids=array('appid1','appid2','appid3');//使用实际的appid,在这一行,输入你需要检测appid即可,就可以得到检测结果
- 基于深度学习YOLOv10的PCB板缺陷检测系统(附完整资源+PySide6界面+训练代码)
人工智能_SYBH
深度学习YOLO人工智能目标检测python
引言:在现代制造业中,电子元件和PCB(印刷电路板)是非常重要的基础设施。PCB缺陷检测是生产过程中至关重要的一步。传统的缺陷检测方法主要依靠人工检查,这不仅效率低,而且容易受到人眼疲劳的影响。随着深度学习技术的不断发展,基于深度学习的自动化缺陷检测已成为研究的热点,尤其是在计算机视觉领域。YOLO(YouOnlyLookOnce)系列算法凭借其高速和高精度的优势,成为了目标检测领域的佼佼者。本文
- C++自研游戏引擎-碰撞检测组件-八叉树AABB检测算法实现
千年奇葩
三维引擎c++人工智能算法八叉树
八叉树碰撞检测是一种在三维空间中高效处理物体碰撞检测的算法,其原理可以类比为一个管理三维空间物体的智能系统。这个示例包含两个部分:八叉树部分用于宏观检测,AABB用于微观检测。AABB可以更换为均值或节点检测来提高检测精度。八叉树的构建确定根节点范围首先要为整个碰撞检测系统确定一个初始范围,这就像是为所有参与碰撞检测的物体划定一个“活动区域”。这个范围是一个能够完全容纳所有待检测物体的三维立方体空
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro