Lucene 功能众多:
使用 Lucene 构建应用程序
如图 1 所示,使用 Lucene 构建功能全面的搜索应用程序主要涉及编制数据索引、搜索数据和显示搜索结果几个方面。
本文从使用 Lucene V2.4.1 和 Java 技术开发的样例应用程序中挑选了一些代码片段。示例应用程序为存储在属性文件中一组电子邮件文档编制索引,并展示了如何使用 Lucene 的查询 API 搜索索引。该示例还让您熟悉基本的索引操作。
为数据编制索引
Lucene 允许您为任何文本格式的数据编制索引。Lucene 可以用于几乎任何数据源以及从中提取的文本信息。您可以使用 Lucene 编制索引并搜索 HTML 文档、Microsoft® Word 文档、PDF 文件中存储的数据。编制数据索引的第一步是让数据变成一个简单的文本格式。您可以使用定制解析器和数据转换器实现这一点。
编制索引的过程
编制索引 是将文本数据转换为有利于快速搜索的格式。这类似于书本后面的索引:为您指出主题在书中出现的位置。
Lucene 将输入数据存储在名为逆序 索引的数据结构中, 该数据结构以索引文件集的形式存储在文件系统或内存中。大部分 Web 搜索引擎都使用逆序索引。它允许用户执行快速关键字查询,查找匹配给定查询的文档。在将文本数据添加到索引前,由分析程序(使用分析过程)进行处理。
分析
分析 是将文本数据转换为搜索基本单位(称为项(term))的过程。在分析过程中,文本数据将经历多项操作:提取单词、移除通用单词、忽略标点符号、将单词变为词根形式、将单词变成小写等等。分析过程发生在编制索引和查询解析之前。分析将文本数据转换为标记,这些标记将作为项添加到 Lucene 索引中。
Lucene 有多种内置分析程序,比如 SimpleAnalyzer、StandardAnalyzer、StopAnalyzer、SnowballAnalyzer 等。它们在标记文本和应用过滤器的方式上有所区别。因为分析在编制索引之前移除单词,它减少了索引的大小,但是不利用精确的查询过程。您可以使用 Lucene 提供的基本构建块创建定制分析程序,以自己的方式控制分析过程。表 1 展示了一些内置分析程序及其处理数据的方式。
分析程序 | 对文本数据的操作 |
---|---|
WhitespaceAnalyzer | 分解空白处的标记 |
SimpleAnalyzer | 分解非字母字符的文本,并将文本转为小写形式 |
StopAnalyzer | 移除虚字(stop word)—— 对检索无用的字,并将文本转为小写形式 |
StandardAnalyzer | 根据一种复杂语法(识别电子邮件地址、缩写、中文、日文、韩文字符、字母数字等等)标记文本 将文本转为小写形式 移除虚字 |
核心索引编制类
默认分析程序适用于英语。在 Lucene 沙盒中还有其他分析程序,包括用于中文、日文和韩文的分析程序。
对索引所做的更改最初缓存在内存中,并周期性转储到索引目录。IndexWriter 公开了几个控制如何在内存中缓存索引并写入磁盘的字段。对索引的更改对于 IndexReader 不可见,除非调用 IndexWriter 的提交或关闭方法。IndexWriter 创建一个目录锁定文件,以通过同步索引更新保护索引不受破坏。IndexWriter 允许用户指定可选索引删除策略。
列表 1. 使用 Lucene IndexWriter
//Create instance of Directory where index files will be stored Directory fsDirectory = FSDirectory.getDirectory(indexDirectory); /* Create instance of analyzer, which will be used to tokenize the input data */ Analyzer standardAnalyzer = new StandardAnalyzer(); //Create a new index boolean create = true; //Create the instance of deletion policy IndexDeletionPolicy deletionPolicy = new KeepOnlyLastCommitDeletionPolicy(); indexWriter =new IndexWriter(fsDirectory,standardAnalyzer,create, deletionPolicy,IndexWriter.MaxFieldLength.UNLIMITED); |
将数据添加到索引
将文本数据添加到索引涉及到两个类。
Field 表示搜索中查询或检索的数据片。Field 类封装一个字段名称及其值。Lucene 提供了一些选项来指定字段是否需要编制索引或分析,以及值是否需要存储。这些选项可以在创建字段实例时传递。下表展示了 Field 元数据选项的详细信息。
选项 | 描述 |
---|---|
Field.Store.Yes | 用于存储字段值。适用于显示搜索结果的字段 — 例如,文件路径和 URL。 |
Field.Store.No | 没有存储字段值 — 例如,电子邮件消息正文。 |
Field.Index.No | 适用于未搜索的字段 — 仅用于存储字段,比如文件路径。 |
Field.Index.ANALYZED | 用于字段索引和分析 — 例如,电子邮件消息正文和标题。 |
Field.Index.NOT_ANALYZED | 用于编制索引但不分析的字段。它在整体中保留字段的原值 — 例如,日期和个人名称。 |
Document 是一个字段集合。Lucene 也支持推进文档和字段,这在给某些索引数据赋予重要性时非常有用。给文本文件编制索引包括将文本数据封装在字段中、创建文档、填充字段,使用 IndexWriter 向索引添加文档。
列表 2 展示向索引添加数据的示例。
列表 2. 向索引添加数据
/*Step 1. Prepare the data for indexing. Extract the data. */ String sender = properties.getProperty("sender"); String date = properties.getProperty("date"); String subject = properties.getProperty("subject"); String message = properties.getProperty("message"); String emaildoc = file.getAbsolutePath(); /* Step 2. Wrap the data in the Fields and add them to a Document */ Field senderField = new Field("sender",sender,Field.Store.YES,Field.Index.NOT_ANALYZED); Field emaildatefield = new Field("date",date,Field.Store.NO,Field.Index.NOT_ANALYZED); Field subjectField = new Field("subject",subject,Field.Store.YES,Field.Index.ANALYZED); Field messagefield = new Field("message",message,Field.Store.NO,Field.Index.ANALYZED); Field emailDocField = new Field("emailDoc",emaildoc,Field.Store.YES, Field.Index.NO); Document doc = new Document(); // Add these fields to a Lucene Document doc.add(senderField); doc.add(emaildatefield); doc.add(subjectField); doc.add(messagefield); doc.add(emailDocField); //Step 3: Add this document to Lucene Index. indexWriter.addDocument(doc); |
搜索索引数据
搜索是在索引中查找单词并查找包含这些单词的文档的过程。使用 Lucene 的搜索 API 构建的搜索功能非常简单明了。本小节讨论 Lucene 搜索 API 的主要类。
Searcher
Searcher 是一个抽象基类,包含各种超负荷搜索方法。IndexSearcher 是一个常用的子类,允许在给定的目录中存储搜索索引。Search 方法返回一个根据计算分数排序的文档集合。Lucene 为每个匹配给定查询的文档计算分数。IndexSearcher 是线程安全的;一个实例可以供多个线程并发使用。
Term
Term 是搜索的基本单位。它由两部分组成:单词文本和出现该文本的字段的名称。Term 对象也涉及索引编制,但是可以在 Lucene 内部创建。
Query 和子类
Query 是一个用于查询的抽象基类。搜索指定单词或词组涉及到在项中包装它们,将项添加到查询对象,将查询对象传递到 IndexSearcher 的搜索方法。
Lucene 包含各种类型的具体查询实现,比如 TermQuery、BooleanQuery、PhraseQuery、PrefixQuery、RangeQuery、MultiTermQuery、FilteredQuery、SpanQuery 等。以下部分讨论 Lucene 查询 API 的主查询类。
例如,考虑电子邮件标题 “Job openings for Java Professionals at Bangalore”。假设您使用 StandardAnalyzer 编制索引。现在如果我们使用 TermQuery 搜索 “Java”,它不会返回任何内容,因为本文本应该已经规范化,并通过 StandardAnalyzer 转成小写。如果搜索小写单词 “java”,它将返回所有标题字段中包含该单词的邮件。
列表 3. 使用 TermQuery 搜索
//Search mails having the word "java" in the subject field Searcher indexSearcher = new IndexSearcher(indexDirectory); Term term = new Term("subject","java"); Query termQuery = new TermQuery(term); TopDocs topDocs = indexSearcher.search(termQuery,10); |
列表 4. 在某个范围内搜索
/* RangeQuery example:Search mails from 01/06/2009 to 6/06/2009 both inclusive */ Term begin = new Term("date","20090601"); Term end = new Term("date","20090606"); Query query = new RangeQuery(begin, end, true); |
列表 5. 使用 PrefixQuery 搜索
//Search mails having sender field prefixed by the word 'job' PrefixQuery prefixQuery = new PrefixQuery(new Term("sender","job")); PrefixQuery query = new PrefixQuery(new Term("sender","job")); |
列表 6. 使用 BooleanQuery 进行搜索
// Search mails have both 'java' and 'bangalore' in the subject field Query query1 = new TermQuery(new Term("subject","java")); Query query2 = new TermQuery(new Term("subject","bangalore")); BooleanQuery query = new BooleanQuery(); query.add(query1,BooleanClause.Occur.MUST); query.add(query2,BooleanClause.Occur.MUST); |
列表 7. 使用 PhraseQuery 进行搜索
/* PhraseQuery example: Search mails that have phrase 'job opening j2ee' in the subject field.*/ PhraseQuery query = new PhraseQuery(); query.setSlop(1); query.add(new Term("subject","job")); query.add(new Term("subject","opening")); query.add(new Term("subject","j2ee")); |
列表 8. 使用 WildcardQuery 进行搜索
//Search for 'arch*' to find e-mail messages that have word 'architect' in the subject field./ Query query = new WildcardQuery(new Term("subject","arch*")); |
列表 9. 使用 FuzzyQuery 进行搜索
/* Search for emails that have word similar to 'admnistrtor' in the subject field. Note we have misspelled admnistrtor here.*/ Query query = new FuzzyQuery(new Term("subject", "admnistrtor")); |
列表 10. 搜索人工输入的查询表达式
QueryParser queryParser = new QueryParser("subject",new StandardAnalyzer()); // Search for emails that contain the words 'job openings' and '.net' and 'pune' Query query = queryParser.parse("job openings AND .net AND pune"); |
显示搜索结果
IndexSearcher 返回一组对分级搜索结果(如匹配给定查询的文档)的引用。您可以使用 IndexSearcher 的搜索方法确定需要检索的最优先搜索结果数量。可以在此基础上构建定制分页。您可以添加定制 Web 应用程序或桌面应用程序来显示搜索结果。检索搜索结果涉及的主要类包括 ScoreDoc 和 TopDocs。
以下代码片段展示了如何检索搜索结果中包含的文档。
/* First parameter is the query to be executed and second parameter indicates the no of search results to fetch */ TopDocs topDocs = indexSearcher.search(query,20); System.out.println("Total hits "+topDocs.totalHits); // Get an array of references to matched documents ScoreDoc[] scoreDosArray = topDocs.scoreDocs; for(ScoreDoc scoredoc: scoreDosArray){ //Retrieve the matched document and show relevant details Document doc = indexSearcher.doc(scoredoc.doc); System.out.println("\nSender: "+doc.getField("sender").stringValue()); System.out.println("Subject: "+doc.getField("subject").stringValue()); System.out.println("Email file location: " +doc.getField("emailDoc").stringValue()); } |
基本的索引操作
基本的索引操作包括移除和提升文档。
从索引中移除文档
应用程序常常需要使用最新的数据更新索引并移除较旧的数据。例如,在 Web 搜索引擎中,索引需要定期更新,因为总是需要添加新网页,移除不存在的网页。Lucene 提供了 IndexReader 接口允许您对索引执行这些操作。
IndexReader 是一个提供各种方法访问索引的抽象类。Lucene 内部引用文档时使用文档编号,该编号可以在向索引添加或从中移除文档时更改。文档编号用于访问索引中的文档。IndexReader 不得用于更新目录中的索引,因为已经打开了 IndexWriter。IndexReader 在打开时总是搜索索引的快照。对索引的任何更改都可以看到,直到再次打开 IndexReader。使用 Lucene 重新打开它们的 IndexReader 可以看到最新的索引更新。
// Delete all the mails from the index received in May 2009. IndexReader indexReader = IndexReader.open(indexDirectory); indexReader.deleteDocuments(new Term("month","05")); //close associate index files and save deletions to disk indexReader.close(); |
提升文档和字段
有时您需要给某些索引数据更高的重要级别。您可以通过设置文档或字段的提升因子实现这一点。默认情况下,所有文档和字段的默认提升因子都是 1.0。
if(subject.toLowerCase().indexOf("pune") != -1){ // Display search results that contain pune in their subject first by setting boost factor subjectField.setBoost(2.2F); } //Display search results that contain 'job' in their sender email address if(sender.toLowerCase().indexOf("job")!=-1){ luceneDocument.setBoost(2.1F); } |
扩展搜索
Lucene 提供一个称为排序 的高级功能。您可以根据指示文档在索引中相对位置的字段对搜索结果进行排序。用于排序的字段必须编制索引但不得标记。搜索字段中可以放入 4 种可能的项值:整数值、long 值、浮点值和字符串。
还可以通过索引顺序排序搜索结果。Lucene 通过降低相关度(比如默认的计算分数)对结果排序。排序的顺序是可以更改的。
/* Search mails having the word 'job' in subject and return results sorted by sender's email in descending order. */ SortField sortField = new SortField("sender", true); Sort sortBySender = new Sort(sortField); WildcardQuery query = new WildcardQuery(new Term("subject","job*")); TopFieldDocs topFieldDocs = indexSearcher.search(query,null,20,sortBySender); //Sorting by index order topFieldDocs = indexSearcher.search(query,null,20,Sort.INDEXORDER); |
Filtering 是限制搜索空间,只允许某个文档子集作为搜索范围的过程。您可以使用该功能实现对搜索结果进行再次搜索,或者在搜索结果上实现安全性。Lucene 带有各种内置的过滤器,比如 BooleanFilter、CachingWrapperFilter、ChainedFilter、DuplicateFilter、PrefixFilter、QueryWrapperFilter、RangeFilter、RemoteCachingWrapperFilter、SpanFilter 等。Filter 可以传递到 IndexSearcher 的搜索方法,以过滤匹配筛选标准的筛选文档。
/*Filter the results to show only mails that have sender field prefixed with 'jobs' */ Term prefix = new Term("sender","jobs"); Filter prefixFilter = new PrefixFilter(prefix); WildcardQuery query = new WildcardQuery(new Term("subject","job*")); indexSearcher.search(query,prefixFilter,20); |
总结:
Lucene版本已经到4.1,一路走过来,对我们项目帮助不少,但是真正使用好这个工具仍然需要下很大功夫。