Prim算法

最小生成树的Prim算法也是贪心算法的一大经典应用。Prim算法的特点是时刻维护一棵树,算法不断加边,加的过程始终是一棵树。

Prim算法过程:

一条边一条边地加, 维护一棵树。

初始 E = {}空集合, V = {任意节点}

循环(n – 1)次,每次选择一条边(v1,v2), 满足:v1属于V , v2不属于V。且(v1,v2)权值最小。

E = E + (v1,v2)
V = V + v2

最终E中的边是一棵最小生成树, V包含了全部节点。


以下图为例介绍Prim算法的执行过程。

Prim算法的过程从A开始 V = {A}, E = {}

选中边AF , V = {A, F}, E = {(A,F)} 

选中边FB, V = {A, F, B}, E = {(A,F), (F,B)}
Prim算法_第1张图片
选中边BD, V = {A, B, F, D},   E = {(A,F), (F,B), (B,D)}
Prim算法_第2张图片
选中边DE, V = {A, B, F, D, E},   E = {(A,F), (F,B), (B,D), (D,E)}
 
选中边BC, V = {A, B, F, D, E, c},   E = {(A,F), (F,B), (B,D), (D,E), (B,C)}, 算法结束。

Prim算法的证明:假设Prim算法得到一棵树P,有一棵最小生成树T。假设P和T不同,我们假设Prim算法进行到第(K – 1)步时选择的边都在T中,这时Prim算法的树是P’, 第K步时,Prim算法选择了一条边e = (u, v)不在T中。假设u在P’中,而v不在。

因为T是树,所以T中必然有一条u到v的路径,我们考虑这条路径上第一个点u在P’中,最后一个点v不在P’中,则路径上一定有一条边f = (x,y),x在P’中,而且y不在P’中。
我们考虑f和e的边权w(f)与w(e)的关系:

若w(f) > w(e),在T中用e换掉f (T中加上e去掉f),得到一个权值和更小的生成树,与T是最小生成树矛盾。
若w(f) < w(e), Prim算法在第K步时应该考虑加边f,而不是e,矛盾。

因此只有w(f) = w(e),我们在T中用e换掉f,这样Prim算法在前K步选择的边在T中了,有限步之后把T变成P,而树权值和不变, 从而Prim算法是正确的。
请仔细理解Prim算法——时刻维护一棵生成树。我们的证明构造性地证明了所有地最小生成树地边权(多重)集合都相同!


你可能感兴趣的:(Prim算法)