平台: MSM8x25Q
系统: Android4.1
从上一篇ION基本概念中,我们了解了heaptype, heap id, client, handle以及如何使用,本篇再从原理上分析下ION的运作流程。
MSM8x25Q平台使用的是board-qrd7627.c,ION相关定义如下:
/** * These heaps are listed in the order they will be allocated. * Don't swap the order unless you know what you are doing! */ struct ion_platform_heap msm7627a_heaps[] = { { .id = ION_SYSTEM_HEAP_ID, .type = ION_HEAP_TYPE_SYSTEM, .name = ION_VMALLOC_HEAP_NAME, }, #ifdef CONFIG_MSM_MULTIMEDIA_USE_ION /* PMEM_ADSP = CAMERA */ { .id = ION_CAMERA_HEAP_ID, .type = CAMERA_HEAP_TYPE, .name = ION_CAMERA_HEAP_NAME, .memory_type = ION_EBI_TYPE, .extra_data = (void *)&co_mm_ion_pdata, .priv = (void *)&ion_cma_device.dev, }, /* AUDIO HEAP 1*/ { .id = ION_AUDIO_HEAP_ID, .type = ION_HEAP_TYPE_CARVEOUT, .name = ION_AUDIO_HEAP_NAME, .memory_type = ION_EBI_TYPE, .extra_data = (void *)&co_ion_pdata, }, /* PMEM_MDP = SF */ { .id = ION_SF_HEAP_ID, .type = ION_HEAP_TYPE_CARVEOUT, .name = ION_SF_HEAP_NAME, .memory_type = ION_EBI_TYPE, .extra_data = (void *)&co_ion_pdata, }, /* AUDIO HEAP 2*/ { .id = ION_AUDIO_HEAP_BL_ID, .type = ION_HEAP_TYPE_CARVEOUT, .name = ION_AUDIO_BL_HEAP_NAME, .memory_type = ION_EBI_TYPE, .extra_data = (void *)&co_ion_pdata, .base = BOOTLOADER_BASE_ADDR, }, #endif }; static struct ion_co_heap_pdata co_ion_pdata = { .adjacent_mem_id = INVALID_HEAP_ID, .align = PAGE_SIZE, }; static struct ion_co_heap_pdata co_mm_ion_pdata = { .adjacent_mem_id = INVALID_HEAP_ID, .align = PAGE_SIZE, }; static u64 msm_dmamask = DMA_BIT_MASK(32); static struct platform_device ion_cma_device = { .name = "ion-cma-device", .id = -1, .dev = { .dma_mask = &msm_dmamask, .coherent_dma_mask = DMA_BIT_MASK(32), } };
Qualcomm提示了不要轻易调换顺序,因为后面代码处理是将顺序定死了的,一旦你调换了,代码就无法正常运行了。
另外, 本系统中只使用了ION_HEAP_TYPE_CARVEOUT和 ION_HEAP_TYPE_SYSTEM这两种heap type.
对于ION_HEAP_TYPE_CARVEOUT的内存分配,后面将会发现,其实就是之前讲述过的使用mem pool来分配的。
Platform device如下,在msm_ion.c中用到。
static struct ion_platform_data ion_pdata = { .nr = MSM_ION_HEAP_NUM, .has_outer_cache = 1, .heaps = msm7627a_heaps, }; static struct platform_device ion_dev = { .name = "ion-msm", .id = 1, .dev = { .platform_data = &ion_pdata }, };
转到msm_ion.c,ion.c的某些函数也被重新封装了下.万事都从设备匹配开始:
static struct platform_driver msm_ion_driver = { .probe = msm_ion_probe, .remove = msm_ion_remove, .driver = { .name = "ion-msm" } }; static int __init msm_ion_init(void) { /*调用msm_ion_probe */ return platform_driver_register(&msm_ion_driver); } static int msm_ion_probe(struct platform_device *pdev) { /*即board-qrd7627a.c中的ion_pdata */ struct ion_platform_data *pdata = pdev->dev.platform_data; int err; int i; /*heap数量*/ num_heaps = pdata->nr; /*分配struct ion_heap */ heaps = kcalloc(pdata->nr, sizeof(struct ion_heap *), GFP_KERNEL); if (!heaps) { err = -ENOMEM; goto out; } /*创建节点,最终是/dev/ion,供用户空间操作。*/ idev = ion_device_create(NULL); if (IS_ERR_OR_NULL(idev)) { err = PTR_ERR(idev); goto freeheaps; } /*最终是根据adjacent_mem_id 是否定义了来分配相邻内存, 我们没用到,忽略此函数。*/ msm_ion_heap_fixup(pdata->heaps, num_heaps); /* create the heaps as specified in the board file */ for (i = 0; i < num_heaps; i++) { struct ion_platform_heap *heap_data = &pdata->heaps[i]; /*分配ion*/ msm_ion_allocate(heap_data); heap_data->has_outer_cache = pdata->has_outer_cache; /*创建ion heap。*/ heaps[i] = ion_heap_create(heap_data); if (IS_ERR_OR_NULL(heaps[i])) { heaps[i] = 0; continue; } else { if (heap_data->size) pr_info("ION heap %s created at %lx " "with size %x\n", heap_data->name, heap_data->base, heap_data->size); else pr_info("ION heap %s created\n", heap_data->name); } /*创建的heap添加到idev中,以便后续使用。*/ ion_device_add_heap(idev, heaps[i]); } /*检查heap之间是否有重叠部分*/ check_for_heap_overlap(pdata->heaps, num_heaps); platform_set_drvdata(pdev, idev); return 0; freeheaps: kfree(heaps); out: return err; } 通过ion_device_create创建/dev/ion节点: struct ion_device *ion_device_create(long (*custom_ioctl) (struct ion_client *client, unsigned int cmd, unsigned long arg)) { struct ion_device *idev; int ret; idev = kzalloc(sizeof(struct ion_device), GFP_KERNEL); if (!idev) return ERR_PTR(-ENOMEM); /*是个misc设备*/ idev->dev.minor = MISC_DYNAMIC_MINOR; /*节点名字为ion*/ idev->dev.name = "ion"; /*fops为ion_fops,所以对应ion的操作都会调用ion_fops的函数指针。*/ idev->dev.fops = &ion_fops; idev->dev.parent = NULL; ret = misc_register(&idev->dev); if (ret) { pr_err("ion: failed to register misc device.\n"); return ERR_PTR(ret); } /*创建debugfs目录,路径为/sys/kernel/debug/ion/*/ idev->debug_root = debugfs_create_dir("ion", NULL); if (IS_ERR_OR_NULL(idev->debug_root)) pr_err("ion: failed to create debug files.\n"); idev->custom_ioctl = custom_ioctl; idev->buffers = RB_ROOT; mutex_init(&idev->lock); idev->heaps = RB_ROOT; idev->clients = RB_ROOT; /*在ion目录下创建一个check_leaked_fds文件,用来检查Ion的使用是否有内存泄漏。如果申请了ion之后不需要使用却没有释放,就会导致memory leak.*/ debugfs_create_file("check_leaked_fds", 0664, idev->debug_root, idev, &debug_leak_fops); return idev; } msm_ion_allocate: static void msm_ion_allocate(struct ion_platform_heap *heap) { if (!heap->base && heap->extra_data) { unsigned int align = 0; switch (heap->type) { /*获取align参数*/ case ION_HEAP_TYPE_CARVEOUT: align = ((struct ion_co_heap_pdata *) heap->extra_data)->align; break; /*此type我们没使用到。*/ case ION_HEAP_TYPE_CP: { struct ion_cp_heap_pdata *data = (struct ion_cp_heap_pdata *) heap->extra_data; if (data->reusable) { const struct fmem_data *fmem_info = fmem_get_info(); heap->base = fmem_info->phys; data->virt_addr = fmem_info->virt; pr_info("ION heap %s using FMEM\n", heap->name); } else if (data->mem_is_fmem) { const struct fmem_data *fmem_info = fmem_get_info(); heap->base = fmem_info->phys + fmem_info->size; } align = data->align; break; } default: break; } if (align && !heap->base) { /*获取heap的base address。*/ heap->base = msm_ion_get_base(heap->size, heap->memory_type, align); if (!heap->base) pr_err("%s: could not get memory for heap %s " "(id %x)\n", __func__, heap->name, heap->id); } } } static unsigned long msm_ion_get_base(unsigned long size, int memory_type, unsigned int align) { switch (memory_type) { /*我们定义的是ebi type,看见没,此函数在mem pool中分析过了。 原理就是使用Mempool 来管理分配内存。*/ case ION_EBI_TYPE: return allocate_contiguous_ebi_nomap(size, align); break; case ION_SMI_TYPE: return allocate_contiguous_memory_nomap(size, MEMTYPE_SMI, align); break; default: pr_err("%s: Unknown memory type %d\n", __func__, memory_type); return 0; } } ion_heap_create: struct ion_heap *ion_heap_create(struct ion_platform_heap *heap_data) { struct ion_heap *heap = NULL; /*根据Heap type调用相应的创建函数。*/ switch (heap_data->type) { case ION_HEAP_TYPE_SYSTEM_CONTIG: heap = ion_system_contig_heap_create(heap_data); break; case ION_HEAP_TYPE_SYSTEM: heap = ion_system_heap_create(heap_data); break; case ION_HEAP_TYPE_CARVEOUT: heap = ion_carveout_heap_create(heap_data); break; case ION_HEAP_TYPE_IOMMU: heap = ion_iommu_heap_create(heap_data); break; case ION_HEAP_TYPE_CP: heap = ion_cp_heap_create(heap_data); break; #ifdef CONFIG_CMA case ION_HEAP_TYPE_DMA: heap = ion_cma_heap_create(heap_data); break; #endif default: pr_err("%s: Invalid heap type %d\n", __func__, heap_data->type); return ERR_PTR(-EINVAL); } if (IS_ERR_OR_NULL(heap)) { pr_err("%s: error creating heap %s type %d base %lu size %u\n", __func__, heap_data->name, heap_data->type, heap_data->base, heap_data->size); return ERR_PTR(-EINVAL); } /*保存Heap的name,id和私有数据。*/ heap->name = heap_data->name; heap->id = heap_data->id; heap->priv = heap_data->priv; return heap; }
从上面的代码可以得知,ION_HEAP_TYPE_SYSTEM_CONTIG使用kmalloc创建的,ION_HEAP_TYPE_SYSTEM使用的是vmalloc,而ion_carveout_heap_create就是系统预分配了一片内存区域供其使用。Ion在申请使用的时候,会根据当前的type来操作各自的heap->ops。分别看下三个函数:
struct ion_heap *ion_system_contig_heap_create(struct ion_platform_heap *pheap) { struct ion_heap *heap; heap = kzalloc(sizeof(struct ion_heap), GFP_KERNEL); if (!heap) return ERR_PTR(-ENOMEM); /*使用的是kmalloc_ops,上篇有提到哦*/ heap->ops = &kmalloc_ops; heap->type = ION_HEAP_TYPE_SYSTEM_CONTIG; system_heap_contig_has_outer_cache = pheap->has_outer_cache; return heap; } struct ion_heap *ion_system_heap_create(struct ion_platform_heap *pheap) { struct ion_heap *heap; heap = kzalloc(sizeof(struct ion_heap), GFP_KERNEL); if (!heap) return ERR_PTR(-ENOMEM); /*和上面函数的区别仅在于ops*/ heap->ops = &vmalloc_ops; heap->type = ION_HEAP_TYPE_SYSTEM; system_heap_has_outer_cache = pheap->has_outer_cache; return heap; } struct ion_heap *ion_carveout_heap_create(struct ion_platform_heap *heap_data) { struct ion_carveout_heap *carveout_heap; int ret; carveout_heap = kzalloc(sizeof(struct ion_carveout_heap), GFP_KERNEL); if (!carveout_heap) return ERR_PTR(-ENOMEM); /* 重新创建一个新的pool,这里有点想不通的是为什么不直接使用全局的mempools呢?*/ carveout_heap->pool = gen_pool_create(12, -1); if (!carveout_heap->pool) { kfree(carveout_heap); return ERR_PTR(-ENOMEM); } carveout_heap->base = heap_data->base; ret = gen_pool_add(carveout_heap->pool, carveout_heap->base, heap_data->size, -1); if (ret < 0) { gen_pool_destroy(carveout_heap->pool); kfree(carveout_heap); return ERR_PTR(-EINVAL); } carveout_heap->heap.ops = &carveout_heap_ops; carveout_heap->heap.type = ION_HEAP_TYPE_CARVEOUT; carveout_heap->allocated_bytes = 0; carveout_heap->total_size = heap_data->size; carveout_heap->has_outer_cache = heap_data->has_outer_cache; if (heap_data->extra_data) { struct ion_co_heap_pdata *extra_data = heap_data->extra_data; if (extra_data->setup_region) carveout_heap->bus_id = extra_data->setup_region(); if (extra_data->request_region) carveout_heap->request_region = extra_data->request_region; if (extra_data->release_region) carveout_heap->release_region = extra_data->release_region; } return &carveout_heap->heap; } Heap创建完成,然后保存到idev中: void ion_device_add_heap(struct ion_device *dev, struct ion_heap *heap) { struct rb_node **p = &dev->heaps.rb_node; struct rb_node *parent = NULL; struct ion_heap *entry; if (!heap->ops->allocate || !heap->ops->free || !heap->ops->map_dma || !heap->ops->unmap_dma) pr_err("%s: can not add heap with invalid ops struct.\n", __func__); heap->dev = dev; mutex_lock(&dev->lock); while (*p) { parent = *p; entry = rb_entry(parent, struct ion_heap, node); if (heap->id < entry->id) { p = &(*p)->rb_left; } else if (heap->id > entry->id ) { p = &(*p)->rb_right; } else { pr_err("%s: can not insert multiple heaps with " "id %d\n", __func__, heap->id); goto end; } } /*使用红黑树保存*/ rb_link_node(&heap->node, parent, p); rb_insert_color(&heap->node, &dev->heaps); /*以heap name创建fs,位于ion目录下。如vamlloc, camera_preview , audio 等*/ debugfs_create_file(heap->name, 0664, dev->debug_root, heap, &debug_heap_fops); end: mutex_unlock(&dev->lock); }
到此,ION初始化已经完成了。接下来该如何使用呢?嗯,通过前面创建的misc设备也就是idev了!还记得里面有个fops为ion_fops吗?先来看下用户空间如何使用ION。
Ion_fops结构如下: static const struct file_operations ion_fops = { .owner = THIS_MODULE, .open = ion_open, .release = ion_release, .unlocked_ioctl = ion_ioctl, }; 用户空间都是通过ioctl来控制。先看ion_open. static int ion_open(struct inode *inode, struct file *file) { struct miscdevice *miscdev = file->private_data; struct ion_device *dev = container_of(miscdev, struct ion_device, dev); struct ion_client *client; char debug_name[64]; pr_debug("%s: %d\n", __func__, __LINE__); snprintf(debug_name, 64, "%u", task_pid_nr(current->group_leader)); /*根据idev和task pid为name创建ion client*/ client = ion_client_create(dev, -1, debug_name); if (IS_ERR_OR_NULL(client)) return PTR_ERR(client); file->private_data = client; return 0; }
前一篇文章有说到,要使用ION, 必须要先创建ionclient, 因此用户空间在open ion的时候创建了client.
struct ion_client *ion_client_create(struct ion_device *dev, unsigned int heap_mask, const char *name) { struct ion_client *client; struct task_struct *task; struct rb_node **p; struct rb_node *parent = NULL; struct ion_client *entry; pid_t pid; unsigned int name_len; if (!name) { pr_err("%s: Name cannot be null\n", __func__); return ERR_PTR(-EINVAL); } name_len = strnlen(name, 64); get_task_struct(current->group_leader); task_lock(current->group_leader); pid = task_pid_nr(current->group_leader); /* don't bother to store task struct for kernel threads, they can't be killed anyway */ if (current->group_leader->flags & PF_KTHREAD) { put_task_struct(current->group_leader); task = NULL; } else { task = current->group_leader; } task_unlock(current->group_leader); /*分配ion client struct.*/ client = kzalloc(sizeof(struct ion_client), GFP_KERNEL); if (!client) { if (task) put_task_struct(current->group_leader); return ERR_PTR(-ENOMEM); } /*下面就是保存一系列参数了。*/ client->dev = dev; client->handles = RB_ROOT; mutex_init(&client->lock); client->name = kzalloc(name_len+1, GFP_KERNEL); if (!client->name) { put_task_struct(current->group_leader); kfree(client); return ERR_PTR(-ENOMEM); } else { strlcpy(client->name, name, name_len+1); } client->heap_mask = heap_mask; client->task = task; client->pid = pid; mutex_lock(&dev->lock); p = &dev->clients.rb_node; while (*p) { parent = *p; entry = rb_entry(parent, struct ion_client, node); if (client < entry) p = &(*p)->rb_left; else if (client > entry) p = &(*p)->rb_right; } /*当前client添加到idev的clients根树上去。*/ rb_link_node(&client->node, parent, p); rb_insert_color(&client->node, &dev->clients); /*在ION先创建的文件名字是以pid命名的。*/ client->debug_root = debugfs_create_file(name, 0664, dev->debug_root, client, &debug_client_fops); mutex_unlock(&dev->lock); return client; }
有了client之后,用户程序就可以开始申请分配ION buffer了!通过ioctl命令实现。
ion_ioct函数有若干个cmd,ION_IOC_ALLOC和ION_IOC_FREE相对应,表示申请和释放buffer。用户空间程序使用前先要调用ION_IOC_MAP才能得到buffer address,而ION_IOC_IMPORT是为了将这块内存共享给用户空间另一个进程。
static long ion_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { struct ion_client *client = filp->private_data; switch (cmd) { case ION_IOC_ALLOC: { struct ion_allocation_data data; if (copy_from_user(&data, (void __user *)arg, sizeof(data))) return -EFAULT; /*分配buffer.*/ data.handle = ion_alloc(client, data.len, data.align, data.flags); if (IS_ERR(data.handle)) return PTR_ERR(data.handle); if (copy_to_user((void __user *)arg, &data, sizeof(data))) { ion_free(client, data.handle); return -EFAULT; } break; } case ION_IOC_FREE: { struct ion_handle_data data; bool valid; if (copy_from_user(&data, (void __user *)arg, sizeof(struct ion_handle_data))) return -EFAULT; mutex_lock(&client->lock); valid = ion_handle_validate(client, data.handle); mutex_unlock(&client->lock); if (!valid) return -EINVAL; ion_free(client, data.handle); break; } case ION_IOC_MAP: case ION_IOC_SHARE: { struct ion_fd_data data; int ret; if (copy_from_user(&data, (void __user *)arg, sizeof(data))) return -EFAULT; /*判断当前cmd是否被调用过了,调用过就返回,否则设置flags.*/ ret = ion_share_set_flags(client, data.handle, filp->f_flags); if (ret) return ret; data.fd = ion_share_dma_buf(client, data.handle); if (copy_to_user((void __user *)arg, &data, sizeof(data))) return -EFAULT; if (data.fd < 0) return data.fd; break; } case ION_IOC_IMPORT: { struct ion_fd_data data; int ret = 0; if (copy_from_user(&data, (void __user *)arg, sizeof(struct ion_fd_data))) return -EFAULT; data.handle = ion_import_dma_buf(client, data.fd); if (IS_ERR(data.handle)) data.handle = NULL; if (copy_to_user((void __user *)arg, &data, sizeof(struct ion_fd_data))) return -EFAULT; if (ret < 0) return ret; break; } case ION_IOC_CUSTOM: ~~snip case ION_IOC_CLEAN_CACHES: case ION_IOC_INV_CACHES: case ION_IOC_CLEAN_INV_CACHES: ~~snip case ION_IOC_GET_FLAGS: ~~snip default: return -ENOTTY; } return 0; } 下面分小节说明分配和共享的原理。
struct ion_handle *ion_alloc(struct ion_client *client, size_t len, size_t align, unsigned int flags) { ~~snip mutex_lock(&dev->lock); /*循环遍历当前Heap链表。*/ for (n = rb_first(&dev->heaps); n != NULL; n = rb_next(n)) { struct ion_heap *heap = rb_entry(n, struct ion_heap, node); /*只有heap type和id都符合才去创建buffer.*/ /* if the client doesn't support this heap type */ if (!((1 << heap->type) & client->heap_mask)) continue; /* if the caller didn't specify this heap type */ if (!((1 << heap->id) & flags)) continue; /* Do not allow un-secure heap if secure is specified */ if (secure_allocation && (heap->type != ION_HEAP_TYPE_CP)) continue; buffer = ion_buffer_create(heap, dev, len, align, flags); ~~snip } mutex_unlock(&dev->lock); ~~snip /*创建了buffer之后,就相应地创建handle来管理buffer.*/ handle = ion_handle_create(client, buffer); ~~snip } 找到Heap之后调用ion_buffer_create: static struct ion_buffer *ion_buffer_create(struct ion_heap *heap, struct ion_device *dev, unsigned long len, unsigned long align, unsigned long flags) { struct ion_buffer *buffer; struct sg_table *table; int ret; /*分配struct ion buffer,用来管理buffer.*/ buffer = kzalloc(sizeof(struct ion_buffer), GFP_KERNEL); if (!buffer) return ERR_PTR(-ENOMEM); buffer->heap = heap; kref_init(&buffer->ref); /*调用相应heap type的ops allocate。还记得前面有提到过不同种类的ops吗, 如carveout_heap_ops ,vmalloc_ops 。*/ ret = heap->ops->allocate(heap, buffer, len, align, flags); if (ret) { kfree(buffer); return ERR_PTR(ret); } buffer->dev = dev; buffer->size = len; /*http://lwn.net/Articles/263343/*/ table = buffer->heap->ops->map_dma(buffer->heap, buffer); if (IS_ERR_OR_NULL(table)) { heap->ops->free(buffer); kfree(buffer); return ERR_PTR(PTR_ERR(table)); } buffer->sg_table = table; mutex_init(&buffer->lock); /*将当前ion buffer添加到idev 的buffers 树上统一管理。*/ ion_buffer_add(dev, buffer); return buffer; }
先拿heap type为ION_HEAP_TYPE_CARVEOUT为例,看下它是如何分配buffer的。
allocate对应ion_carveout_heap_allocate。
static int ion_carveout_heap_allocate(struct ion_heap *heap, struct ion_buffer *buffer, unsigned long size, unsigned long align, unsigned long flags) { buffer->priv_phys = ion_carveout_allocate(heap, size, align); return buffer->priv_phys == ION_CARVEOUT_ALLOCATE_FAIL ? -ENOMEM : 0; } ion_phys_addr_t ion_carveout_allocate(struct ion_heap *heap, unsigned long size, unsigned long align) { struct ion_carveout_heap *carveout_heap = container_of(heap, struct ion_carveout_heap, heap); /*通过创建的mem pool来管理buffer,由于这块buffer在初始化的 时候就预留了,现在只要从上面拿一块区域就可以了。*/ unsigned long offset = gen_pool_alloc_aligned(carveout_heap->pool, size, ilog2(align)); /*分配不成功可能是没有内存空间可供分配了或者是有碎片导致的。*/ if (!offset) { if ((carveout_heap->total_size - carveout_heap->allocated_bytes) >= size) pr_debug("%s: heap %s has enough memory (%lx) but" " the allocation of size %lx still failed." " Memory is probably fragmented.", __func__, heap->name, carveout_heap->total_size - carveout_heap->allocated_bytes, size); return ION_CARVEOUT_ALLOCATE_FAIL; } /*已经分配掉的内存字节。*/ carveout_heap->allocated_bytes += size; return offset; }
同样地,对于heap type为ION_HEAP_TYPE_SYSTEM的分配函数是ion_system_heap_allocate。
static int ion_system_contig_heap_allocate(struct ion_heap *heap, struct ion_buffer *buffer, unsigned long len, unsigned long align, unsigned long flags) { /*通过kzalloc分配。*/ buffer->priv_virt = kzalloc(len, GFP_KERNEL); if (!buffer->priv_virt) return -ENOMEM; atomic_add(len, &system_contig_heap_allocated); return 0; }其他的几种Heap type可自行研究,接着调用ion_buffer_add将buffer添加到dev的buffers树上去。
static void ion_buffer_add(struct ion_device *dev, struct ion_buffer *buffer) { struct rb_node **p = &dev->buffers.rb_node; struct rb_node *parent = NULL; struct ion_buffer *entry; while (*p) { parent = *p; entry = rb_entry(parent, struct ion_buffer, node); if (buffer < entry) { p = &(*p)->rb_left; } else if (buffer > entry) { p = &(*p)->rb_right; } else { pr_err("%s: buffer already found.", __func__); BUG(); } } /*又是使用红黑树哦!*/ rb_link_node(&buffer->node, parent, p); rb_insert_color(&buffer->node, &dev->buffers); }
好了buffer创建完成,接下来就要创建Hanle来管理buffer了!
static struct ion_handle *ion_handle_create(struct ion_client *client, struct ion_buffer *buffer) { struct ion_handle *handle; /*分配struct ion_handle.*/ handle = kzalloc(sizeof(struct ion_handle), GFP_KERNEL); if (!handle) return ERR_PTR(-ENOMEM); kref_init(&handle->ref); rb_init_node(&handle->node); handle->client = client; //client放入handle中 ion_buffer_get(buffer); //引用计数加1 handle->buffer = buffer; //buffer也放入handle中 return handle; }
创建handle也比较简单,至此,已经得到client和handle,buffer分配完成!
int ion_share_dma_buf(struct ion_client *client, struct ion_handle *handle) { struct ion_buffer *buffer; struct dma_buf *dmabuf; bool valid_handle; int fd; mutex_lock(&client->lock); valid_handle = ion_handle_validate(client, handle); mutex_unlock(&client->lock); if (!valid_handle) { WARN(1, "%s: invalid handle passed to share.\n", __func__); return -EINVAL; } buffer = handle->buffer; ion_buffer_get(buffer); /*生成一个新的file描述符*/ dmabuf = dma_buf_export(buffer, &dma_buf_ops, buffer->size, O_RDWR); if (IS_ERR(dmabuf)) { ion_buffer_put(buffer); return PTR_ERR(dmabuf); } /*将file转换用户空间识别的fd描述符。*/ fd = dma_buf_fd(dmabuf, O_CLOEXEC); if (fd < 0) dma_buf_put(dmabuf); return fd; } struct dma_buf *dma_buf_export(void *priv, const struct dma_buf_ops *ops, size_t size, int flags) { struct dma_buf *dmabuf; struct file *file; ~~snip /*分配struct dma_buf.*/ dmabuf = kzalloc(sizeof(struct dma_buf), GFP_KERNEL); if (dmabuf == NULL) return ERR_PTR(-ENOMEM); /*保存信息到dmabuf,注意ops为dma_buf_ops,后面mmap为调用到。*/ dmabuf->priv = priv; dmabuf->ops = ops; dmabuf->size = size; /*产生新的file*/ file = anon_inode_getfile("dmabuf", &dma_buf_fops, dmabuf, flags); dmabuf->file = file; mutex_init(&dmabuf->lock); INIT_LIST_HEAD(&dmabuf->attachments); return dmabuf; }通过上述过程,用户空间就得到了新的fd,重新生成一个新的fd的目的是考虑了两个用户空间进程想共享这块heap内存的情况。然后再对fd作mmap,相应地kernel空间就调用到了file 的dma_buf_fops中的dma_buf_mmap_internal。
static const struct file_operations dma_buf_fops = { .release = dma_buf_release, .mmap = dma_buf_mmap_internal, }; static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) { struct dma_buf *dmabuf; if (!is_dma_buf_file(file)) return -EINVAL; dmabuf = file->private_data; /*检查用户空间要映射的size是否比目前dmabuf也就是当前heap的size 还要大,如果是就返回无效。*/ /* check for overflowing the buffer's size */ if (vma->vm_pgoff + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) > dmabuf->size >> PAGE_SHIFT) return -EINVAL; /*调用的是dma_buf_ops 的mmap函数*/ return dmabuf->ops->mmap(dmabuf, vma); } struct dma_buf_ops dma_buf_ops = { .map_dma_buf = ion_map_dma_buf, .unmap_dma_buf = ion_unmap_dma_buf, .mmap = ion_mmap, .release = ion_dma_buf_release, .begin_cpu_access = ion_dma_buf_begin_cpu_access, .end_cpu_access = ion_dma_buf_end_cpu_access, .kmap_atomic = ion_dma_buf_kmap, .kunmap_atomic = ion_dma_buf_kunmap, .kmap = ion_dma_buf_kmap, .kunmap = ion_dma_buf_kunmap, }; static int ion_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma) { struct ion_buffer *buffer = dmabuf->priv; int ret; if (!buffer->heap->ops->map_user) { pr_err("%s: this heap does not define a method for mapping " "to userspace\n", __func__); return -EINVAL; } mutex_lock(&buffer->lock); /* now map it to userspace */ /*调用的是相应heap的map_user,如carveout_heap_ops 调用的是 ion_carveout_heap_map_user ,此函数就是一般的mmap实现,不追下去了。*/ ret = buffer->heap->ops->map_user(buffer->heap, buffer, vma); if (ret) { mutex_unlock(&buffer->lock); pr_err("%s: failure mapping buffer to userspace\n", __func__); } else { buffer->umap_cnt++; mutex_unlock(&buffer->lock); vma->vm_ops = &ion_vm_ops; /* * move the buffer into the vm_private_data so we can access it * from vma_open/close */ vma->vm_private_data = buffer; } return ret; }
至此,用户空间就得到了bufferaddress,然后可以使用了!
当用户空间另一个进程需要这块heap的时候,ION_IOC_IMPORT就派上用处了!注意,
传进去的fd为在ION_IOC_SHARE中得到的。
struct ion_handle *ion_import_dma_buf(struct ion_client *client, int fd) { struct dma_buf *dmabuf; struct ion_buffer *buffer; struct ion_handle *handle; dmabuf = dma_buf_get(fd); if (IS_ERR_OR_NULL(dmabuf)) return ERR_PTR(PTR_ERR(dmabuf)); /* if this memory came from ion */ ~~snip buffer = dmabuf->priv; mutex_lock(&client->lock); /* if a handle exists for this buffer just take a reference to it */ /*查找是否已经存在对应的handle了,没有则创建。因为另外一个进程只是 调用了open 接口,对应的只创建了client,并没有handle。 */ handle = ion_handle_lookup(client, buffer); if (!IS_ERR_OR_NULL(handle)) { ion_handle_get(handle); goto end; } handle = ion_handle_create(client, buffer); if (IS_ERR_OR_NULL(handle)) goto end; ion_handle_add(client, handle); end: mutex_unlock(&client->lock); dma_buf_put(dmabuf); return handle; }
这样,用户空间另一个进程也得到了对应的bufferHandle,client/buffer/handle之间连接起来了!然后另一个一个进程就也可以使用mmap来操作这块heap buffer了。
和一般的进程使用ION区别就是共享的进程之间struction_buffer是共享的,而struct ion_handle是各自的。
可见,ION的使用流程还是比较清晰的。不过要记得的是,使用好了ION,一定要释放掉,否则会导致内存泄露。
内核空间使用ION也是大同小异,按照创建client,buffer,handle的流程,只是它的使用对用户空间来说是透明的罢了!
ion_client_create在kernel空间被Qualcomm给封装了下。
struct ion_client *msm_ion_client_create(unsigned int heap_mask, const char *name) { return ion_client_create(idev, heap_mask, name); }
调用的流程也类似,不过map的时候调用的是heap对应的map_kernel()而不是map_user().
msm_ion_client_create -> ion_alloc ->ion_map_kernel
http://lwn.net/Articles/480055/
《ARM体系结构与编程》存储系统章节