ION原理分析

平台: MSM8x25Q

系统: Android4.1

从上一篇ION基本概念中,我们了解了heaptype, heap id, client, handle以及如何使用,本篇再从原理上分析下ION的运作流程。

         MSM8x25Q平台使用的是board-qrd7627.c,ION相关定义如下:

/**
 * These heaps are listed in the order they will be allocated.
 * Don't swap the order unless you know what you are doing!
 */
struct ion_platform_heap msm7627a_heaps[] = {
		{
			.id	= ION_SYSTEM_HEAP_ID,
			.type	= ION_HEAP_TYPE_SYSTEM,
			.name	= ION_VMALLOC_HEAP_NAME,
		},
#ifdef CONFIG_MSM_MULTIMEDIA_USE_ION
		/* PMEM_ADSP = CAMERA */
		{
			.id	= ION_CAMERA_HEAP_ID,
			.type	= CAMERA_HEAP_TYPE,
			.name	= ION_CAMERA_HEAP_NAME,
			.memory_type = ION_EBI_TYPE,
			.extra_data = (void *)&co_mm_ion_pdata,
			.priv	= (void *)&ion_cma_device.dev,
		},
		/* AUDIO HEAP 1*/
		{
			.id	= ION_AUDIO_HEAP_ID,
			.type	= ION_HEAP_TYPE_CARVEOUT,
			.name	= ION_AUDIO_HEAP_NAME,
			.memory_type = ION_EBI_TYPE,
			.extra_data = (void *)&co_ion_pdata,
		},
		/* PMEM_MDP = SF */
		{
			.id	= ION_SF_HEAP_ID,
			.type	= ION_HEAP_TYPE_CARVEOUT,
			.name	= ION_SF_HEAP_NAME,
			.memory_type = ION_EBI_TYPE,
			.extra_data = (void *)&co_ion_pdata,
		},
		/* AUDIO HEAP 2*/
		{
			.id    = ION_AUDIO_HEAP_BL_ID,
			.type  = ION_HEAP_TYPE_CARVEOUT,
			.name  = ION_AUDIO_BL_HEAP_NAME,
			.memory_type = ION_EBI_TYPE,
			.extra_data = (void *)&co_ion_pdata,
			.base = BOOTLOADER_BASE_ADDR,
		},

#endif
};

static struct ion_co_heap_pdata co_ion_pdata = {
	.adjacent_mem_id = INVALID_HEAP_ID,
	.align = PAGE_SIZE,
};

static struct ion_co_heap_pdata co_mm_ion_pdata = {
	.adjacent_mem_id = INVALID_HEAP_ID,
	.align = PAGE_SIZE,
};

static u64 msm_dmamask = DMA_BIT_MASK(32);

static struct platform_device ion_cma_device = {
	.name = "ion-cma-device",
	.id = -1,
	.dev = {
		.dma_mask = &msm_dmamask,
		.coherent_dma_mask = DMA_BIT_MASK(32),
	}
};

Qualcomm提示了不要轻易调换顺序,因为后面代码处理是将顺序定死了的,一旦你调换了,代码就无法正常运行了。

另外, 本系统中只使用了ION_HEAP_TYPE_CARVEOUT和 ION_HEAP_TYPE_SYSTEM这两种heap type.

对于ION_HEAP_TYPE_CARVEOUT的内存分配,后面将会发现,其实就是之前讲述过的使用mem pool来分配的。

Platform device如下,在msm_ion.c中用到。

static struct ion_platform_data ion_pdata = {
	.nr = MSM_ION_HEAP_NUM,
	.has_outer_cache = 1,
	.heaps = msm7627a_heaps,
};

static struct platform_device ion_dev = {
	.name = "ion-msm",
	.id = 1,
	.dev = { .platform_data = &ion_pdata },
};

ION初始化

转到msm_ion.c,ion.c的某些函数也被重新封装了下.万事都从设备匹配开始:

static struct platform_driver msm_ion_driver = {
	.probe = msm_ion_probe,
	.remove = msm_ion_remove,
	.driver = { .name = "ion-msm" }
};
static int __init msm_ion_init(void)
{
	/*调用msm_ion_probe */
	return platform_driver_register(&msm_ion_driver);
}

static int msm_ion_probe(struct platform_device *pdev)
{
	/*即board-qrd7627a.c中的ion_pdata */
	struct ion_platform_data *pdata = pdev->dev.platform_data;
	int err;
	int i;

	/*heap数量*/
	num_heaps = pdata->nr;
	/*分配struct ion_heap */
	heaps = kcalloc(pdata->nr, sizeof(struct ion_heap *), GFP_KERNEL);

	if (!heaps) {
		err = -ENOMEM;
		goto out;
	}
	/*创建节点,最终是/dev/ion,供用户空间操作。*/
	idev = ion_device_create(NULL);
	if (IS_ERR_OR_NULL(idev)) {
		err = PTR_ERR(idev);
		goto freeheaps;
	}
	/*最终是根据adjacent_mem_id 是否定义了来分配相邻内存,
我们没用到,忽略此函数。*/
	msm_ion_heap_fixup(pdata->heaps, num_heaps);

	/* create the heaps as specified in the board file */
	for (i = 0; i < num_heaps; i++) {
		struct ion_platform_heap *heap_data = &pdata->heaps[i];
		/*分配ion*/
		msm_ion_allocate(heap_data);

		heap_data->has_outer_cache = pdata->has_outer_cache;
		/*创建ion heap。*/
		heaps[i] = ion_heap_create(heap_data);
		if (IS_ERR_OR_NULL(heaps[i])) {
			heaps[i] = 0;
			continue;
		} else {
			if (heap_data->size)
				pr_info("ION heap %s created at %lx "
					"with size %x\n", heap_data->name,
							  heap_data->base,
							  heap_data->size);
			else
				pr_info("ION heap %s created\n",
							  heap_data->name);
		}
		/*创建的heap添加到idev中,以便后续使用。*/
		ion_device_add_heap(idev, heaps[i]);
	}
	/*检查heap之间是否有重叠部分*/
	check_for_heap_overlap(pdata->heaps, num_heaps);
	platform_set_drvdata(pdev, idev);
	return 0;

freeheaps:
	kfree(heaps);
out:
	return err;
}

通过ion_device_create创建/dev/ion节点:
struct ion_device *ion_device_create(long (*custom_ioctl)
				     (struct ion_client *client,
				      unsigned int cmd,
				      unsigned long arg))
{
	struct ion_device *idev;
	int ret;
	
	idev = kzalloc(sizeof(struct ion_device), GFP_KERNEL);
	if (!idev)
		return ERR_PTR(-ENOMEM);
	/*是个misc设备*/
	idev->dev.minor = MISC_DYNAMIC_MINOR;
	/*节点名字为ion*/
	idev->dev.name = "ion";
	/*fops为ion_fops,所以对应ion的操作都会调用ion_fops的函数指针。*/
	idev->dev.fops = &ion_fops;
	idev->dev.parent = NULL;
	ret = misc_register(&idev->dev);
	if (ret) {
		pr_err("ion: failed to register misc device.\n");
		return ERR_PTR(ret);
	}
	/*创建debugfs目录,路径为/sys/kernel/debug/ion/*/
	idev->debug_root = debugfs_create_dir("ion", NULL);
	if (IS_ERR_OR_NULL(idev->debug_root))
		pr_err("ion: failed to create debug files.\n");

	idev->custom_ioctl = custom_ioctl;
	idev->buffers = RB_ROOT;
	mutex_init(&idev->lock);
	idev->heaps = RB_ROOT;
	idev->clients = RB_ROOT;
	/*在ion目录下创建一个check_leaked_fds文件,用来检查Ion的使用是否有内存泄漏。如果申请了ion之后不需要使用却没有释放,就会导致memory leak.*/
	debugfs_create_file("check_leaked_fds", 0664, idev->debug_root, idev,
			    &debug_leak_fops);
	return idev;
}

msm_ion_allocate:
static void msm_ion_allocate(struct ion_platform_heap *heap)
{

	if (!heap->base && heap->extra_data) {
		unsigned int align = 0;
		switch (heap->type) {
		/*获取align参数*/
		case ION_HEAP_TYPE_CARVEOUT:
			align =
			((struct ion_co_heap_pdata *) heap->extra_data)->align;
			break;
		/*此type我们没使用到。*/
		case ION_HEAP_TYPE_CP:
		{
			struct ion_cp_heap_pdata *data =
				(struct ion_cp_heap_pdata *)
				heap->extra_data;
			if (data->reusable) {
				const struct fmem_data *fmem_info =
					fmem_get_info();
				heap->base = fmem_info->phys;
				data->virt_addr = fmem_info->virt;
				pr_info("ION heap %s using FMEM\n", heap->name);
			} else if (data->mem_is_fmem) {
				const struct fmem_data *fmem_info =
					fmem_get_info();
				heap->base = fmem_info->phys + fmem_info->size;
			}
			align = data->align;
			break;
		}
		default:
			break;
		}
		if (align && !heap->base) {
			/*获取heap的base address。*/
			heap->base = msm_ion_get_base(heap->size,
						      heap->memory_type,
						      align);
			if (!heap->base)
				pr_err("%s: could not get memory for heap %s "
				   "(id %x)\n", __func__, heap->name, heap->id);
		}
	}
}

static unsigned long msm_ion_get_base(unsigned long size, int memory_type,
				    unsigned int align)
{
	switch (memory_type) {
	/*我们定义的是ebi type,看见没,此函数在mem pool中分析过了。
原理就是使用Mempool 来管理分配内存。*/
	case ION_EBI_TYPE:
		return allocate_contiguous_ebi_nomap(size, align);
		break;
	case ION_SMI_TYPE:
		return allocate_contiguous_memory_nomap(size, MEMTYPE_SMI,
							align);
		break;
	default:
		pr_err("%s: Unknown memory type %d\n", __func__, memory_type);
		return 0;
	}
}
ion_heap_create:
struct ion_heap *ion_heap_create(struct ion_platform_heap *heap_data)
{
	struct ion_heap *heap = NULL;
	/*根据Heap type调用相应的创建函数。*/
	switch (heap_data->type) {
	case ION_HEAP_TYPE_SYSTEM_CONTIG:
		heap = ion_system_contig_heap_create(heap_data);
		break;
	case ION_HEAP_TYPE_SYSTEM:
		heap = ion_system_heap_create(heap_data);
		break;
	case ION_HEAP_TYPE_CARVEOUT:
		heap = ion_carveout_heap_create(heap_data);
		break;
	case ION_HEAP_TYPE_IOMMU:
		heap = ion_iommu_heap_create(heap_data);
		break;
	case ION_HEAP_TYPE_CP:
		heap = ion_cp_heap_create(heap_data);
		break;
#ifdef CONFIG_CMA
	case ION_HEAP_TYPE_DMA:
		heap = ion_cma_heap_create(heap_data);
		break;
#endif
	default:
		pr_err("%s: Invalid heap type %d\n", __func__,
		       heap_data->type);
		return ERR_PTR(-EINVAL);
	}

	if (IS_ERR_OR_NULL(heap)) {
		pr_err("%s: error creating heap %s type %d base %lu size %u\n",
		       __func__, heap_data->name, heap_data->type,
		       heap_data->base, heap_data->size);
		return ERR_PTR(-EINVAL);
	}
	/*保存Heap的name,id和私有数据。*/
	heap->name = heap_data->name;
	heap->id = heap_data->id;
	heap->priv = heap_data->priv;
	return heap;
}

从上面的代码可以得知,ION_HEAP_TYPE_SYSTEM_CONTIG使用kmalloc创建的,ION_HEAP_TYPE_SYSTEM使用的是vmalloc,而ion_carveout_heap_create就是系统预分配了一片内存区域供其使用。Ion在申请使用的时候,会根据当前的type来操作各自的heap->ops。分别看下三个函数:

struct ion_heap *ion_system_contig_heap_create(struct ion_platform_heap *pheap)
{
	struct ion_heap *heap;

	heap = kzalloc(sizeof(struct ion_heap), GFP_KERNEL);
	if (!heap)
		return ERR_PTR(-ENOMEM);
	/*使用的是kmalloc_ops,上篇有提到哦*/
	heap->ops = &kmalloc_ops;
	heap->type = ION_HEAP_TYPE_SYSTEM_CONTIG;
	system_heap_contig_has_outer_cache = pheap->has_outer_cache;
	return heap;
}
struct ion_heap *ion_system_heap_create(struct ion_platform_heap *pheap)
{
	struct ion_heap *heap;

	heap = kzalloc(sizeof(struct ion_heap), GFP_KERNEL);
	if (!heap)
		return ERR_PTR(-ENOMEM);
	/*和上面函数的区别仅在于ops*/
	heap->ops = &vmalloc_ops;
	heap->type = ION_HEAP_TYPE_SYSTEM;
	system_heap_has_outer_cache = pheap->has_outer_cache;
	return heap;
}
struct ion_heap *ion_carveout_heap_create(struct ion_platform_heap *heap_data)
{
	struct ion_carveout_heap *carveout_heap;
	int ret;

	carveout_heap = kzalloc(sizeof(struct ion_carveout_heap), GFP_KERNEL);
	if (!carveout_heap)
		return ERR_PTR(-ENOMEM);
	/* 重新创建一个新的pool,这里有点想不通的是为什么不直接使用全局的mempools呢?*/
	carveout_heap->pool = gen_pool_create(12, -1);
	if (!carveout_heap->pool) {
		kfree(carveout_heap);
		return ERR_PTR(-ENOMEM);
	}
	carveout_heap->base = heap_data->base;
	ret = gen_pool_add(carveout_heap->pool, carveout_heap->base,
			heap_data->size, -1);
	if (ret < 0) {
		gen_pool_destroy(carveout_heap->pool);
		kfree(carveout_heap);
		return ERR_PTR(-EINVAL);
	}
	carveout_heap->heap.ops = &carveout_heap_ops;
	carveout_heap->heap.type = ION_HEAP_TYPE_CARVEOUT;
	carveout_heap->allocated_bytes = 0;
	carveout_heap->total_size = heap_data->size;
	carveout_heap->has_outer_cache = heap_data->has_outer_cache;

	if (heap_data->extra_data) {
		struct ion_co_heap_pdata *extra_data =
				heap_data->extra_data;

		if (extra_data->setup_region)
			carveout_heap->bus_id = extra_data->setup_region();
		if (extra_data->request_region)
			carveout_heap->request_region =
					extra_data->request_region;
		if (extra_data->release_region)
			carveout_heap->release_region =
					extra_data->release_region;
	}
	return &carveout_heap->heap;
}

Heap创建完成,然后保存到idev中:
void ion_device_add_heap(struct ion_device *dev, struct ion_heap *heap)
{
	struct rb_node **p = &dev->heaps.rb_node;
	struct rb_node *parent = NULL;
	struct ion_heap *entry;

	if (!heap->ops->allocate || !heap->ops->free || !heap->ops->map_dma ||
	    !heap->ops->unmap_dma)
		pr_err("%s: can not add heap with invalid ops struct.\n",
		       __func__);

	heap->dev = dev;
	mutex_lock(&dev->lock);
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct ion_heap, node);

		if (heap->id < entry->id) {
			p = &(*p)->rb_left;
		} else if (heap->id > entry->id ) {
			p = &(*p)->rb_right;
		} else {
			pr_err("%s: can not insert multiple heaps with "
				"id %d\n", __func__, heap->id);
			goto end;
		}
	}
	/*使用红黑树保存*/
	rb_link_node(&heap->node, parent, p);
	rb_insert_color(&heap->node, &dev->heaps);
	/*以heap name创建fs,位于ion目录下。如vamlloc, camera_preview , audio 等*/
	debugfs_create_file(heap->name, 0664, dev->debug_root, heap,
			    &debug_heap_fops);
end:
	mutex_unlock(&dev->lock);
}

到此,ION初始化已经完成了。接下来该如何使用呢?嗯,通过前面创建的misc设备也就是idev了!还记得里面有个fops为ion_fops吗?先来看下用户空间如何使用ION。

ION用户空间使用

Ion_fops结构如下:
static const struct file_operations ion_fops = {
	.owner          = THIS_MODULE,
	.open           = ion_open,
	.release        = ion_release,
	.unlocked_ioctl = ion_ioctl,
};

用户空间都是通过ioctl来控制。先看ion_open.

static int ion_open(struct inode *inode, struct file *file)
{
	struct miscdevice *miscdev = file->private_data;
	struct ion_device *dev = container_of(miscdev, struct ion_device, dev);
	struct ion_client *client;
	char debug_name[64];

	pr_debug("%s: %d\n", __func__, __LINE__);
	snprintf(debug_name, 64, "%u", task_pid_nr(current->group_leader));
	/*根据idev和task pid为name创建ion client*/
	client = ion_client_create(dev, -1, debug_name);
	if (IS_ERR_OR_NULL(client))
		return PTR_ERR(client);
	file->private_data = client;

	return 0;
}

前一篇文章有说到,要使用ION, 必须要先创建ionclient, 因此用户空间在open ion的时候创建了client.

struct ion_client *ion_client_create(struct ion_device *dev,
				     unsigned int heap_mask,
				     const char *name)
{
	struct ion_client *client;
	struct task_struct *task;
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct ion_client *entry;
	pid_t pid;
	unsigned int name_len;

	if (!name) {
		pr_err("%s: Name cannot be null\n", __func__);
		return ERR_PTR(-EINVAL);
	}
	name_len = strnlen(name, 64);

	get_task_struct(current->group_leader);
	task_lock(current->group_leader);
	pid = task_pid_nr(current->group_leader);
	/* don't bother to store task struct for kernel threads,
	   they can't be killed anyway */
	if (current->group_leader->flags & PF_KTHREAD) {
		put_task_struct(current->group_leader);
		task = NULL;
	} else {
		task = current->group_leader;
	}
	task_unlock(current->group_leader);
	/*分配ion client struct.*/
	client = kzalloc(sizeof(struct ion_client), GFP_KERNEL);
	if (!client) {
		if (task)
			put_task_struct(current->group_leader);
		return ERR_PTR(-ENOMEM);
	}
	/*下面就是保存一系列参数了。*/
	client->dev = dev;
	client->handles = RB_ROOT;
	mutex_init(&client->lock);

	client->name = kzalloc(name_len+1, GFP_KERNEL);
	if (!client->name) {
		put_task_struct(current->group_leader);
		kfree(client);
		return ERR_PTR(-ENOMEM);
	} else {
		strlcpy(client->name, name, name_len+1);
	}

	client->heap_mask = heap_mask;
	client->task = task;
	client->pid = pid;

	mutex_lock(&dev->lock);
	p = &dev->clients.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct ion_client, node);

		if (client < entry)
			p = &(*p)->rb_left;
		else if (client > entry)
			p = &(*p)->rb_right;
	}
	/*当前client添加到idev的clients根树上去。*/
	rb_link_node(&client->node, parent, p);
	rb_insert_color(&client->node, &dev->clients);

	/*在ION先创建的文件名字是以pid命名的。*/
	client->debug_root = debugfs_create_file(name, 0664,
						 dev->debug_root, client,
						 &debug_client_fops);
	mutex_unlock(&dev->lock);

	return client;
}

有了client之后,用户程序就可以开始申请分配ION buffer了!通过ioctl命令实现。

ion_ioct函数有若干个cmd,ION_IOC_ALLOC和ION_IOC_FREE相对应,表示申请和释放buffer。用户空间程序使用前先要调用ION_IOC_MAP才能得到buffer address,而ION_IOC_IMPORT是为了将这块内存共享给用户空间另一个进程。

static long ion_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
	struct ion_client *client = filp->private_data;

	switch (cmd) {
	case ION_IOC_ALLOC:
	{
		struct ion_allocation_data data;

		if (copy_from_user(&data, (void __user *)arg, sizeof(data)))
			return -EFAULT;
		/*分配buffer.*/
		data.handle = ion_alloc(client, data.len, data.align,
					     data.flags);

		if (IS_ERR(data.handle))
			return PTR_ERR(data.handle);

		if (copy_to_user((void __user *)arg, &data, sizeof(data))) {
			ion_free(client, data.handle);
			return -EFAULT;
		}
		break;
	}
	case ION_IOC_FREE:
	{
		struct ion_handle_data data;
		bool valid;

		if (copy_from_user(&data, (void __user *)arg,
				   sizeof(struct ion_handle_data)))
			return -EFAULT;
		mutex_lock(&client->lock);
		valid = ion_handle_validate(client, data.handle);
		mutex_unlock(&client->lock);
		if (!valid)
			return -EINVAL;
		ion_free(client, data.handle);
		break;
	}
	case ION_IOC_MAP:
	case ION_IOC_SHARE:
	{
		struct ion_fd_data data;
		int ret;
		if (copy_from_user(&data, (void __user *)arg, sizeof(data)))
			return -EFAULT;
		/*判断当前cmd是否被调用过了,调用过就返回,否则设置flags.*/
		ret = ion_share_set_flags(client, data.handle, filp->f_flags);
		if (ret)
			return ret;

		data.fd = ion_share_dma_buf(client, data.handle);
		if (copy_to_user((void __user *)arg, &data, sizeof(data)))
			return -EFAULT;
		if (data.fd < 0)
			return data.fd;
		break;
	}
	case ION_IOC_IMPORT:
	{
		struct ion_fd_data data;
		int ret = 0;
		if (copy_from_user(&data, (void __user *)arg,
				   sizeof(struct ion_fd_data)))
			return -EFAULT;
		data.handle = ion_import_dma_buf(client, data.fd);
		if (IS_ERR(data.handle))
			data.handle = NULL;
		if (copy_to_user((void __user *)arg, &data,
				 sizeof(struct ion_fd_data)))
			return -EFAULT;
		if (ret < 0)
			return ret;
		break;
	}
	case ION_IOC_CUSTOM:
~~snip
	case ION_IOC_CLEAN_CACHES:
	case ION_IOC_INV_CACHES:
	case ION_IOC_CLEAN_INV_CACHES:
	~~snip
	case ION_IOC_GET_FLAGS:
~~snip
	default:
		return -ENOTTY;
	}
	return 0;
}

下面分小节说明分配和共享的原理。

ION_IOC_ALLOC

struct ion_handle *ion_alloc(struct ion_client *client, size_t len,
			     size_t align, unsigned int flags)
{
~~snip

	mutex_lock(&dev->lock);
	/*循环遍历当前Heap链表。*/
	for (n = rb_first(&dev->heaps); n != NULL; n = rb_next(n)) {
		struct ion_heap *heap = rb_entry(n, struct ion_heap, node);
/*只有heap type和id都符合才去创建buffer.*/
		/* if the client doesn't support this heap type */
		if (!((1 << heap->type) & client->heap_mask))
			continue;
		/* if the caller didn't specify this heap type */
		if (!((1 << heap->id) & flags))
			continue;
		/* Do not allow un-secure heap if secure is specified */
		if (secure_allocation && (heap->type != ION_HEAP_TYPE_CP))
			continue;
		buffer = ion_buffer_create(heap, dev, len, align, flags);
~~snip
	}
	mutex_unlock(&dev->lock);

~~snip
	/*创建了buffer之后,就相应地创建handle来管理buffer.*/
	handle = ion_handle_create(client, buffer);

~~snip
}

找到Heap之后调用ion_buffer_create:
static struct ion_buffer *ion_buffer_create(struct ion_heap *heap,
				     struct ion_device *dev,
				     unsigned long len,
				     unsigned long align,
				     unsigned long flags)
{
	struct ion_buffer *buffer;
	struct sg_table *table;
	int ret;
	/*分配struct ion buffer,用来管理buffer.*/
	buffer = kzalloc(sizeof(struct ion_buffer), GFP_KERNEL);
	if (!buffer)
		return ERR_PTR(-ENOMEM);

	buffer->heap = heap;
	kref_init(&buffer->ref);
	/*调用相应heap type的ops allocate。还记得前面有提到过不同种类的ops吗,
如carveout_heap_ops ,vmalloc_ops 。*/
	ret = heap->ops->allocate(heap, buffer, len, align, flags);
	if (ret) {
		kfree(buffer);
		return ERR_PTR(ret);
	}

	buffer->dev = dev;
	buffer->size = len;
	/*http://lwn.net/Articles/263343/*/
	table = buffer->heap->ops->map_dma(buffer->heap, buffer);
	if (IS_ERR_OR_NULL(table)) {
		heap->ops->free(buffer);
		kfree(buffer);
		return ERR_PTR(PTR_ERR(table));
	}
	buffer->sg_table = table;

	mutex_init(&buffer->lock);
	/*将当前ion buffer添加到idev 的buffers 树上统一管理。*/
	ion_buffer_add(dev, buffer);
	return buffer;
}

先拿heap type为ION_HEAP_TYPE_CARVEOUT为例,看下它是如何分配buffer的。

allocate对应ion_carveout_heap_allocate。

static int ion_carveout_heap_allocate(struct ion_heap *heap,
				      struct ion_buffer *buffer,
				      unsigned long size, unsigned long align,
				      unsigned long flags)
{
	buffer->priv_phys = ion_carveout_allocate(heap, size, align);
	return buffer->priv_phys == ION_CARVEOUT_ALLOCATE_FAIL ? -ENOMEM : 0;
}
ion_phys_addr_t ion_carveout_allocate(struct ion_heap *heap,
				      unsigned long size,
				      unsigned long align)
{
	struct ion_carveout_heap *carveout_heap =
		container_of(heap, struct ion_carveout_heap, heap);
	/*通过创建的mem pool来管理buffer,由于这块buffer在初始化的
时候就预留了,现在只要从上面拿一块区域就可以了。*/
	unsigned long offset = gen_pool_alloc_aligned(carveout_heap->pool,
							size, ilog2(align));
	/*分配不成功可能是没有内存空间可供分配了或者是有碎片导致的。*/
	if (!offset) {
		if ((carveout_heap->total_size -
		      carveout_heap->allocated_bytes) >= size)
			pr_debug("%s: heap %s has enough memory (%lx) but"
				" the allocation of size %lx still failed."
				" Memory is probably fragmented.",
				__func__, heap->name,
				carveout_heap->total_size -
				carveout_heap->allocated_bytes, size);
		return ION_CARVEOUT_ALLOCATE_FAIL;
	}
	/*已经分配掉的内存字节。*/
	carveout_heap->allocated_bytes += size;
	return offset;
}

同样地,对于heap type为ION_HEAP_TYPE_SYSTEM的分配函数是ion_system_heap_allocate。

static int ion_system_contig_heap_allocate(struct ion_heap *heap,
					   struct ion_buffer *buffer,
					   unsigned long len,
					   unsigned long align,
					   unsigned long flags)
{
	/*通过kzalloc分配。*/
	buffer->priv_virt = kzalloc(len, GFP_KERNEL);
	if (!buffer->priv_virt)
		return -ENOMEM;
	atomic_add(len, &system_contig_heap_allocated);
	return 0;
}
其他的几种Heap type可自行研究,接着调用ion_buffer_add将buffer添加到dev的buffers树上去。
static void ion_buffer_add(struct ion_device *dev,
			   struct ion_buffer *buffer)
{
	struct rb_node **p = &dev->buffers.rb_node;
	struct rb_node *parent = NULL;
	struct ion_buffer *entry;

	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct ion_buffer, node);

		if (buffer < entry) {
			p = &(*p)->rb_left;
		} else if (buffer > entry) {
			p = &(*p)->rb_right;
		} else {
			pr_err("%s: buffer already found.", __func__);
			BUG();
		}
	}
/*又是使用红黑树哦!*/
	rb_link_node(&buffer->node, parent, p);
	rb_insert_color(&buffer->node, &dev->buffers);
}

好了buffer创建完成,接下来就要创建Hanle来管理buffer了!

static struct ion_handle *ion_handle_create(struct ion_client *client,
				     struct ion_buffer *buffer)
{
	struct ion_handle *handle;
	/*分配struct ion_handle.*/
	handle = kzalloc(sizeof(struct ion_handle), GFP_KERNEL);
	if (!handle)
		return ERR_PTR(-ENOMEM);
	kref_init(&handle->ref);
	rb_init_node(&handle->node);
	handle->client = client;	//client放入handle中
	ion_buffer_get(buffer);	//引用计数加1 
	handle->buffer = buffer;	//buffer也放入handle中

	return handle;
}

创建handle也比较简单,至此,已经得到client和handle,buffer分配完成!

ION_IOC_MAP/ ION_IOC_SHARE

int ion_share_dma_buf(struct ion_client *client, struct ion_handle *handle)
{
	struct ion_buffer *buffer;
	struct dma_buf *dmabuf;
	bool valid_handle;
	int fd;

	mutex_lock(&client->lock);
	valid_handle = ion_handle_validate(client, handle);
	mutex_unlock(&client->lock);
	if (!valid_handle) {
		WARN(1, "%s: invalid handle passed to share.\n", __func__);
		return -EINVAL;
	}

	buffer = handle->buffer;
	ion_buffer_get(buffer);
	/*生成一个新的file描述符*/
	dmabuf = dma_buf_export(buffer, &dma_buf_ops, buffer->size, O_RDWR);
	if (IS_ERR(dmabuf)) {
		ion_buffer_put(buffer);
		return PTR_ERR(dmabuf);
	}
	/*将file转换用户空间识别的fd描述符。*/
	fd = dma_buf_fd(dmabuf, O_CLOEXEC);
	if (fd < 0)
		dma_buf_put(dmabuf);

	return fd;
}
struct dma_buf *dma_buf_export(void *priv, const struct dma_buf_ops *ops,
				size_t size, int flags)
{
	struct dma_buf *dmabuf;
	struct file *file;
~~snip
	/*分配struct dma_buf.*/
	dmabuf = kzalloc(sizeof(struct dma_buf), GFP_KERNEL);
	if (dmabuf == NULL)
		return ERR_PTR(-ENOMEM);
	/*保存信息到dmabuf,注意ops为dma_buf_ops,后面mmap为调用到。*/
	dmabuf->priv = priv;
	dmabuf->ops = ops;
	dmabuf->size = size;
	/*产生新的file*/
	file = anon_inode_getfile("dmabuf", &dma_buf_fops, dmabuf, flags);

	dmabuf->file = file;

	mutex_init(&dmabuf->lock);
	INIT_LIST_HEAD(&dmabuf->attachments);

	return dmabuf;
}
通过上述过程,用户空间就得到了新的fd,重新生成一个新的fd的目的是考虑了两个用户空间进程想共享这块heap内存的情况。然后再对fd作mmap,相应地kernel空间就调用到了file 的dma_buf_fops中的dma_buf_mmap_internal。
static const struct file_operations dma_buf_fops = {
	.release	= dma_buf_release,
	.mmap		= dma_buf_mmap_internal,
};
static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
 {
 	struct dma_buf *dmabuf;
 
 	if (!is_dma_buf_file(file))
 		return -EINVAL;
 
 	dmabuf = file->private_data;
 	/*检查用户空间要映射的size是否比目前dmabuf也就是当前heap的size
还要大,如果是就返回无效。*/
 	/* check for overflowing the buffer's size */
 	if (vma->vm_pgoff + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) >
 	    dmabuf->size >> PAGE_SHIFT)
 		return -EINVAL;
 	/*调用的是dma_buf_ops 的mmap函数*/
 	return dmabuf->ops->mmap(dmabuf, vma);
 }

struct dma_buf_ops dma_buf_ops = {
	.map_dma_buf = ion_map_dma_buf,
	.unmap_dma_buf = ion_unmap_dma_buf,
	.mmap = ion_mmap,
	.release = ion_dma_buf_release,
	.begin_cpu_access = ion_dma_buf_begin_cpu_access,
	.end_cpu_access = ion_dma_buf_end_cpu_access,
	.kmap_atomic = ion_dma_buf_kmap,
	.kunmap_atomic = ion_dma_buf_kunmap,
	.kmap = ion_dma_buf_kmap,
	.kunmap = ion_dma_buf_kunmap,
};
static int ion_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
{
	struct ion_buffer *buffer = dmabuf->priv;
	int ret;

	if (!buffer->heap->ops->map_user) {
		pr_err("%s: this heap does not define a method for mapping "
		       "to userspace\n", __func__);
		return -EINVAL;
	}

	mutex_lock(&buffer->lock);
	/* now map it to userspace */
	/*调用的是相应heap的map_user,如carveout_heap_ops 调用的是
ion_carveout_heap_map_user ,此函数就是一般的mmap实现,不追下去了。*/
	ret = buffer->heap->ops->map_user(buffer->heap, buffer, vma);

	if (ret) {
		mutex_unlock(&buffer->lock);
		pr_err("%s: failure mapping buffer to userspace\n",
		       __func__);
	} else {
		buffer->umap_cnt++;
		mutex_unlock(&buffer->lock);

		vma->vm_ops = &ion_vm_ops;
		/*
		 * move the buffer into the vm_private_data so we can access it
		 * from vma_open/close
		 */
		vma->vm_private_data = buffer;
	}
	return ret;
}

至此,用户空间就得到了bufferaddress,然后可以使用了!

ION_IOC_IMPORT

当用户空间另一个进程需要这块heap的时候,ION_IOC_IMPORT就派上用处了!注意,

传进去的fd为在ION_IOC_SHARE中得到的。

struct ion_handle *ion_import_dma_buf(struct ion_client *client, int fd)
{
	
	struct dma_buf *dmabuf;
	struct ion_buffer *buffer;
	struct ion_handle *handle;

	dmabuf = dma_buf_get(fd);
	if (IS_ERR_OR_NULL(dmabuf))
		return ERR_PTR(PTR_ERR(dmabuf));
	/* if this memory came from ion */
~~snip
	buffer = dmabuf->priv;

	mutex_lock(&client->lock);
	/* if a handle exists for this buffer just take a reference to it */
/*查找是否已经存在对应的handle了,没有则创建。因为另外一个进程只是
调用了open 接口,对应的只创建了client,并没有handle。
*/
	handle = ion_handle_lookup(client, buffer);
	if (!IS_ERR_OR_NULL(handle)) {
		ion_handle_get(handle);
		goto end;
	}
	handle = ion_handle_create(client, buffer);
	if (IS_ERR_OR_NULL(handle))
		goto end;
	ion_handle_add(client, handle);
end:
	mutex_unlock(&client->lock);
	dma_buf_put(dmabuf);
	return handle;
}

这样,用户空间另一个进程也得到了对应的bufferHandle,client/buffer/handle之间连接起来了!然后另一个一个进程就也可以使用mmap来操作这块heap buffer了。

和一般的进程使用ION区别就是共享的进程之间struction_buffer是共享的,而struct ion_handle是各自的。

 可见,ION的使用流程还是比较清晰的。不过要记得的是,使用好了ION,一定要释放掉,否则会导致内存泄露。

ION内核空间使用

内核空间使用ION也是大同小异,按照创建client,buffer,handle的流程,只是它的使用对用户空间来说是透明的罢了!

ion_client_create在kernel空间被Qualcomm给封装了下。

struct ion_client *msm_ion_client_create(unsigned int heap_mask,
					const char *name)
{
	return ion_client_create(idev, heap_mask, name);
}

调用的流程也类似,不过map的时候调用的是heap对应的map_kernel()而不是map_user().

msm_ion_client_create -> ion_alloc ->ion_map_kernel

参考文档:

http://lwn.net/Articles/480055/

《ARM体系结构与编程》存储系统章节



20130227




你可能感兴趣的:(ION原理分析)