我们这次将学着使用ExtractIndices滤波器来从一个分割算法中导出点的下标。为了不把这个项目复杂化,我们不会在这里解释分割算法。
我们先建一个extract_indices.cpp
代码
#include <iostream> #include <pcl/ModelCoefficients.h> #include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include <pcl/sample_consensus/method_types.h> #include <pcl/sample_consensus/model_types.h> #include <pcl/segmentation/sac_segmentation.h> #include <pcl/filters/voxel_grid.h> #include <pcl/filters/extract_indices.h> int main (int argc, char** argv) { pcl::PCLPointCloud2::Ptr cloud_blob (new pcl::PCLPointCloud2), cloud_filtered_blob (new pcl::PCLPointCloud2); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>), cloud_p (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>); // Fill in the cloud data pcl::PCDReader reader; reader.read ("table_scene_lms400.pcd", *cloud_blob); std::cerr << "PointCloud before filtering: " << cloud_blob->width * cloud_blob->height << " data points." << std::endl; // Create the filtering object: downsample the dataset using a leaf size of 1cm pcl::VoxelGrid<pcl::PCLPointCloud2> sor; sor.setInputCloud (cloud_blob); sor.setLeafSize (0.01f, 0.01f, 0.01f); sor.filter (*cloud_filtered_blob); // Convert to the templated PointCloud pcl::fromPCLPointCloud2 (*cloud_filtered_blob, *cloud_filtered); std::cerr << "PointCloud after filtering: " << cloud_filtered->width * cloud_filtered->height << " data points." << std::endl; // Write the downsampled version to disk pcl::PCDWriter writer; writer.write<pcl::PointXYZ> ("table_scene_lms400_downsampled.pcd", *cloud_filtered, false); pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ()); pcl::PointIndices::Ptr inliers (new pcl::PointIndices ()); // Create the segmentation object pcl::SACSegmentation<pcl::PointXYZ> seg; // Optional seg.setOptimizeCoefficients (true); // Mandatory seg.setModelType (pcl::SACMODEL_PLANE); seg.setMethodType (pcl::SAC_RANSAC); seg.setMaxIterations (1000); seg.setDistanceThreshold (0.01); // Create the filtering object pcl::ExtractIndices<pcl::PointXYZ> extract; int i = 0, nr_points = (int) cloud_filtered->points.size (); // While 30% of the original cloud is still there while (cloud_filtered->points.size () > 0.3 * nr_points) { // Segment the largest planar component from the remaining cloud seg.setInputCloud (cloud_filtered); seg.segment (*inliers, *coefficients); if (inliers->indices.size () == 0) { std::cerr << "Could not estimate a planar model for the given dataset." << std::endl; break; } // Extract the inliers extract.setInputCloud (cloud_filtered); extract.setIndices (inliers); extract.setNegative (false); extract.filter (*cloud_p); std::cerr << "PointCloud representing the planar component: " << cloud_p->width * cloud_p->height << " data points." << std::endl; std::stringstream ss; ss << "table_scene_lms400_plane_" << i << ".pcd"; writer.write<pcl::PointXYZ> (ss.str (), *cloud_p, false); // Create the filtering object extract.setNegative (true); extract.filter (*cloud_f); cloud_filtered.swap (cloud_f); i++; } return (0);
代码解释
首先我们用体元栅格滤波器来对数据进行降低采样。在这里,更少的点意味着花费更少的时间进行计算。
pcl::VoxelGrid<pcl::PCLPointCloud2> sor; sor.setInputCloud (cloud_blob); sor.setLeafSize (0.01f, 0.01f, 0.01f); sor.filter (*cloud_filtered_blob);
下一个代码块将处理参数分割。
pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ()); pcl::PointIndices::Ptr inliers (new pcl::PointIndices ()); // Create the segmentation object pcl::SACSegmentation<pcl::PointXYZ> seg; // Optional seg.setOptimizeCoefficients (true); // Mandatory seg.setModelType (pcl::SACMODEL_PLANE); seg.setMethodType (pcl::SAC_RANSAC); seg.setMaxIterations (1000); seg.setDistanceThreshold (0.01);
下面这行
pcl::ExtractIndices<pcl::PointXYZ> extract;
和
extract.setInputCloud (cloud_filtered); extract.setIndices (inliers); extract.setNegative (false); extract.filter (*cloud_p);
代表了导出的滤波器后的真实的下标。为了处理多个模型,我们把这个教程在一个循环中进行处理,对于每一个被导出的模型,我们返回去获取指定的点,并且进行迭代,inliers(正常的好的点云)这个将在分割处理后获取。
运行结果
PointCloud before filtering: 460400 data points. PointCloud after filtering: 41049 data points. PointCloud representing the planar component: 20164 data points. PointCloud representing the planar component: 12129 data points.