Python GIL 系列之通过设置进程运行的CPU来提高Python程序的性能

        通过《通过实例认识Python的GIL》 ,《再谈Python的GIL》 ,《再谈Python的GIL(续)》已经基本上认识到了 Python的线程在多核情况下的性能是比较低的,但是在单核情况就就没有这个问题,难道就没有一个好的办法让Python的线程在多核情况下像单核情况下表现卓越吗?答案是有的,那就是限制Python在指定的CPU上运行。

在Windows下,有个函数可以指定进程在指定的CPU上运行:SetProcessAffinityMask

 

BOOL WINAPI SetProcessAffinityMask(
  _In_  HANDLE hProcess,
  _In_  DWORD_PTR dwProcessAffinityMask
);


dwProcessAffinityMask用于指定运行的CPU,比如1表示在CPU 0上运行,2表示在CPU 1上运行,3表示在CPU 0 和CPU 1上运行。


接下来看下怎么实现:

utility.pyx

cdef extern from "Windows.h":
    ctypedef int BOOL
    ctypedef void * HANDLE    
    ctypedef unsigned long DWORD_PTR
    int SetProcessAffinityMask(HANDLE hProcess,DWORD_PTR dwProcessAffinityMask) nogil
    HANDLE GetCurrentProcess() nogil

def SetAffinity(int mask):
    with nogil:
        SetProcessAffinityMask(<HANDLE>GetCurrentProcess(),mask)


Setup.py

 

from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize

ext = Extension("utility", 
                    define_macros = [('MAJOR_VERSION', '1'),
                                     ('MINOR_VERSION', '0')],
                    sources = ["utility.pyx", ])

setup(
    name = 'callback',
    version = '1.0',
    description = 'This is a callback demo package',
    author = '',
    author_email = '[email protected]',
    url = '',
    long_description = '',
    ext_modules=cythonize([ext,]),
)


编译生成utility.pyd:

python Setup.py build_ext --inplace

 

再看下测试用例:

count.py

from threading import Thread
from threading import Event as TEvent
from multiprocessing import Process
from multiprocessing import Event as PEvent

import utility
utility.SetAffinity(1)

from timeit import Timer
import sys
sys.setcheckinterval(100) #(100000)
def countdown(n,event):
    while n > 0:
        n -= 1
    event.set()

def io_op(n,event,filename):
    f = open(filename,'w')
    while not event.is_set():
        f.write('hello,world')
    f.close()

def t1():
    COUNT=100000000
    event = TEvent()
    thread1 = Thread(target=countdown,args=(COUNT,event))
    thread1.start()
    thread1.join()

def t2():
    COUNT=100000000
    event = TEvent()
    thread1 = Thread(target=countdown,args=(COUNT//2,event))
    thread2 = Thread(target=countdown,args=(COUNT//2,event))
    thread1.start(); thread2.start()
    thread1.join(); thread2.join()

def t3():
    COUNT=100000000
    event = PEvent()
    p1 = Process(target=countdown,args=(COUNT//2,event))
    p2 = Process(target=countdown,args=(COUNT//2,event))
    p1.start(); p2.start()
    p1.join(); p2.join()


def t4():
    COUNT=100000000 
    event = TEvent()
    thread1 = Thread(target=countdown,args=(COUNT,event))
    thread2 = Thread(target=io_op,args=(COUNT,event,'thread.txt'))
    thread1.start(); thread2.start()
    thread1.join(); thread2.join()

def t5():
    COUNT=100000000 
    event = PEvent()
    p1 = Process(target=countdown,args=(COUNT,event))
    p2 = Process(target=io_op,args=(COUNT,event,'process.txt'))
    p1.start(); p2.start()
    p1.join(); p2.join()

if __name__ == '__main__':
    t = Timer(t1)
    print('countdown in one thread:%f'%(t.timeit(1),))
    t = Timer(t2)
    print('countdown use two thread:%f'%(t.timeit(1),))
    t = Timer(t3)
    print('countdown use two Process:%f'%(t.timeit(1),))

    t = Timer(t4)
    print('countdown in one thread with io op in another thread:%f'%(t.timeit(1),))

    t = Timer(t5)
    print('countdown in one process with io op in another process:%f'%(t.timeit(1),))



相对于之前的测试用例,加了两行代码:

import utility

utility.SetAffinity(1)


 我们来看下测试用例的输出:

countdown in one thread:7.005823
countdown use two thread:4.790538
countdown use two Process:4.936478
countdown in one thread with io op in another thread:9.526901
countdown in one process with io op in another process:9.262508

 

再对比一下之前在单核情况下的输出:

countdown in one thread:', 5.9650638561501195    

countdown use two thread:', 5.8188333656781595    

countdown use two Process', 6.197559396296269    

countdown in one thread with io op in another thread:', 11.369204522553051  

countdown in one process with io op in another process:', 11.79234388645473

 

由于这次测试时开的程序比较多,输出和之前有些差别,但是基本上是一致的。之前说要避免在多核情况下使用Thread,现在看来是错的了,只要限制进程运行的CPU即可。

 

在linux下,也可以用taskset命令来设置进程运行的CPU,这个以后再讨论。

 

从这篇文章我们可以得出一个结论:Python的GIL在多核CPU环境中的影响并没有之前想像的那么坏,在这个世界上,办法永远比困难多,就看你能不能坚持。

 

 

你可能感兴趣的:(python,多核,GIL,Affinity)