logistic回归详解(二):损失函数(cost function)详解

有监督学习

机器学习分为有监督学习,无监督学习,半监督学习,强化学习。对于逻辑回归来说,就是一种典型的有监督学习。
既然是有监督学习,训练集自然可以用如下方式表述:

{(x1,y1),(x2,y2),,(xm,ym)}

对于这m个训练样本,每个样本本身有n维特征。再加上一个偏置项 x0 , 则每个样本包含n+1维特征:

x=[x0,x1,x2,,xn]T

其中 xRn+1 , x0=1 , y{0,1}

李航博士在统计学习方法一书中给分类问题做了如下定义:
分类是监督学习的一个核心问题,在监督学习中,当输出变量Y取有限个离散值时,预测问题便成为分类问题。这时,输入变量X可以是离散的,也可以是连续的。监督学习从数据中学习一个分类模型或分类决策函数,称为分类器(classifier)。分类器对新的输入进行输出的预测(prediction),称为分类(classification).

在logistic回归详解一(http://blog.csdn.net/bitcarmanlee/article/details/51154481)中,我们花了一整篇篇幅阐述了为什么要使用logistic函数:

hθ(x)=g(θTx)=11+eθTx

其中一个重要的原因,就是要将Hypothesis(NG课程里的说法)的输出映射到0与1之间,既:
0hθ(x)1

同样是李航博士统计学习方法一书中,有以下描述:
统计学习方法都是由模型,策略,和算法构成的,即统计学习方法由三要素构成,可以简单表示为:

=++

对于logistic回归来说,模型自然就是logistic回归,策略最常用的方法是用一个损失函数(loss function)或代价函数(cost function)来度量预测错误程度,算法则是求解过程,后期会详细描述相关的优化算法。

logistic函数求导

g(z)=ddz11+ez=1(1+ez)2(ez)=1(1+ez)(11(1+ez))=g(z)(1g(z))

此求导公式在后续推导中会使用到

常见的损失函数

机器学习或者统计机器学习常见的损失函数如下:

1.0-1损失函数 (0-1 loss function)

L(Y,f(X))={1,0, f(X)Y = f(X)

2.平方损失函数(quadratic loss function)

L(Y,f(X))=(Yf(x))2

3.绝对值损失函数(absolute loss function)

L(Y,f(x))=|Yf(X)|

4.对数损失函数(logarithmic loss function) 或对数似然损失函数(log-likehood loss function)

L(Y,P(Y|X))=logP(Y|X)

逻辑回归中,采用的则是对数损失函数。如果损失函数越小,表示模型越好。

损失函数详解

根据上面的内容,我们可以得到逻辑回归的对数似然损失函数cost function:

cost(hθ(x),y)={log(hθ(x))log(1hθ(x))if y=1if y=0

稍微解释下这个损失函数,或者说解释下对数似然损失函数:
当y=1时,假定这个样本为正类。如果此时 hθ(x)=1 ,则单对这个样本而言的cost=0,表示这个样本的预测完全准确。那如果所有样本都预测准确,总的cost=0
但是如果此时预测的概率 hθ(x)=0 ,那么 cost 。直观解释的话,由于此时样本为一个正样本,但是预测的结果 P(y=1|x;θ)=0 , 也就是说预测 y=1的概率为0,那么此时就要对损失函数加一个很大的惩罚项。
当y=0时,推理过程跟上述完全一致,不再累赘。

将以上两个表达式合并为一个,则单个样本的损失函数可以描述为:

cost(hθ(x),y)=yilog(hθ(x))(1yi)log(1hθ(x))

因为 yi 只有两种取值情况,1或0,分别令y=1或y=0,即可得到原来的分段表示式。

全体样本的损失函数可以表示为:

cost(hθ(x),y)=i=1myilog(hθ(x))(1yi)log(1hθ(x))

这就是逻辑回归最终的损失函数表达式

你可能感兴趣的:(详解,Logistic回归)