POJ 2104 K-th Number

POJ 2104题目大意如下:

给定N(N <= 100000) 个整数,进行M(M <= 5000)次询问,每次询问的方式以一个三元组的形式呈现,比如(i,j,k)表示在从第i个数和第j个数之间,升序状态下的第k个数。

如果单纯的使用排序,对于5000次询问,这样花费的时间比较多。这里采用平方分割的方法,那么可以在O(n^0.5)的时间内完成。

大方向是使用另外一个N容量的数组存储对原来数组的升序情况,然后采用二分法,每次选取一个数,根据这个数在(i,j)区间的位置情况,进而选出真正的第k个数。

1.假设X是第k个数,那么一定有:

1)在询问区间内,不超过X的个数一定不少于k个

2)在询问区间内,小于X的个数一定少于k个

那么以上就是二分搜索的一个判定条件。接下来是:如果不对之前的数组进行预处理,那么久只能通过遍历一边的方式来查询所有元素,但是我们可以采用对区间进行有序化处理,这样就可以通过二分搜索高效地求出不超过X的数的个数了。

但是有没有必要对每个查询都进行一次排序,这样的话对于降低复杂度没有半点功用。所以可以考虑采用平方分割的方法进行求解。

主要步骤分为:

1)对于完全包含在查询区间内的桶,可以用二分搜索计算小于X的数的数量

2)对于在不被查询区间包含,而只是部分重合,可以使用原来的数组直接将其找出,逐个检查

代码如下:(第一次AC 1932K/12000MS,就觉得这时间有点不对,所以后来又交一遍结果TE了。。。所以还是建议用线段树最保险)

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <vector>

using namespace std;
const int maxn = 100002;
const int maxn2 = 5002;
const int B = 1000;
int A[maxn], I[maxn2], J[maxn2], K[maxn2], infer[maxn];
vector<int> bucket[maxn / B];

int N, M;

void solve() {
	for (int i = 0; i < N; i++) {
		bucket[i / B].push_back(A[i]);
		infer[i] = A[i];
	}

	sort(infer, infer + N);
	for (int i = 0; i < N / B; i++) sort(bucket[i].begin(), bucket[i].end());

	for (int i = 0; i < M; i++) {
		int left = -1, right = N - 1;
		int k = K[i];
		//二分筛选
		while (right - left > 1) {
			int mid = (right + left) / 2;
			int tl = I[i] - 1, tr = J[i], v = infer[mid], am = 0;

			while (tl < tr && tl % B) if (A[tl++] <= v) am++;
			while (tr > tl && tr % B) if (A[--tr] <= v) am++;


			while (tl < tr) {
				int j = tl / B;
				am += upper_bound(bucket[j].begin(), bucket[j].end(), v) - bucket[j].begin();
				tl += B;
			}
			//am >= k说明当前的数比实际数要大,所以往下搜索,否则往上搜索
			if (am >= k) right = mid;
			else left = mid;
		}
		printf("%d\n", infer[right]);
	}
}

int main() {
	scanf("%d %d", &N, &M);
	for (int i = 0; i < N; i++) scanf("%d", &A[i]);
	for (int i = 0; i < M; i++) scanf("%d %d %d", &I[i], &J[i], &K[i]);
	solve();
	return 0;
}

接下来使用线段树的方法,每个节点管理的是一个升序数组,该升序数组是由子数组组成的,其实感觉用线段树实现比平方分割好多了,写起来思路更流畅(虽然参看了书),事实证明也是如此,跑的结果是这样的:Accept 16400K / 6250MS 节省了一半时间:

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>

using namespace std;
const int ST_SIZE = (1 << 18) - 1;
const int maxn1 = 100001;
const int maxn2 = 5005;

int N, M;
int A[maxn1];
int I[maxn2], J[maxn2], K[maxn2];

vector<int> dat[ST_SIZE];

void init(int k, int l, int r) {
	if (r - 1 == l) dat[k].push_back(A[l]);
	else {
		int mid = (l + r) / 2;
		init(k*2 + 1, l, mid);
		init(k*2 + 2, mid, r);
		dat[k].resize(r - l);
		merge(dat[k*2 + 1].begin(), dat[k*2 + 1].end(), dat[k*2 + 2].begin(), dat[k*2 + 2].end(), dat[k].begin()); 
	}
}

int query(int x, int k, int cl, int cr, int ql, int qr) {
	if (cl >= qr || cr <= ql) return 0;
	if (qr >= cr && cl >= ql) return upper_bound(dat[k].begin(), dat[k].end(), x) - dat[k].begin();
	int mid = (cl + cr) / 2;
	return query(x, k*2 + 1, cl, mid, ql, qr) + query(x, k*2 + 2, mid, cr, ql, qr);
}

void solve() {
	init(0, 0, N);
	sort(A, A + N);

	for (int i = 0; i < M; i++) {
		int l = I[i] - 1, r = J[i], k = K[i];
		int lb = -1, ub = N - 1;
		while (ub - lb > 1) {
			int mid = (ub + lb) / 2;
			int c = query(A[mid], 0, 0, N, l, r);
			if (c >= k) ub = mid;
			else lb = mid;
		}
		printf("%d\n", A[ub]);
	}
}

int main() {
	scanf("%d %d", &N, &M);
	for (int i = 0; i < N; i++) scanf("%d", &A[i]);
	for (int i = 0; i < M; i++) scanf("%d %d %d", &I[i], &J[i], &K[i]);
	solve();
}


你可能感兴趣的:(ACM,poj,ICPC,平方分割)