- Python dlib(HOG+SVM)人脸识别总结
程序媛一枚~
人脸识别python支持向量机开发语言读书笔记人脸检测识别
Pythondlib(HOG+SVM)人脸识别总结面部标志检测dlib68点(HOG+SVM),194点人脸识别模型,包括口(外嘴唇,内嘴唇),鼻,眉毛(左右眉),眼睛(左右眼),下鄂5点面部标志检测器(左眼2点,右眼2点,鼻子1点)面部对齐更高效眨眼检测ear眨眼瞬间达到0疲劳驾驶检测—连续帧ear面部对齐眼睛连线反正切获取旋转角度,期望图像眼睛横长度计算比率左眼计算右眼相对坐标眼睛横中心点作为
- 基于MATLAB图像特征识别及提取实现图像分类
jghhh01
机器学习算法人工智能
基于MATLAB的图形处理程序,可以进行图像特征识别及提取,进而实现图像分类。hog_svm.m,2276svm_images/test_image/1.jpg,20980svm_images/test_image/2.jpg,18246svm_images/test_image/3.jpg,13835svm_images/test_image/4.jpg,18539svm_images/test
- Pyeeg模块部分功能介绍
脑电情绪识别
脑电情绪识别python神经网络深度学习pycharm
1.pyeeg简单介绍PyEEG是一个Python模块(即函数库),用于提取EEG(脑电)特征。正在添加更多功能。它包含构建用于特征提取的数据的函数,例如从给定的时间序列构建嵌入序列。它还能够将功能导出为svmlight格式,以便调用机器学习及深度学习工具。2.部分函数介绍1.pyeeg.ap_entropy(X,M,R)pyeeg.ap_entropy(X, M, R)计算时间序列X的近似熵(A
- 基于传统机器学习SVM支持向量机进行分类和目标检测-视频介绍下自取
no_work
深度学习机器学习支持向量机分类
内容包括:python通过SVM+SIFT实现墙体裂缝检测107python通过SVM+SIFT实现墙体裂缝检测_哔哩哔哩_bilibili该代码使用python语言编写,代码实现了一个基于SVM(支持向量机)和SIFT(尺度不变特征变换)特征的裂缝检测系统。具体来说,分为两个部分:训练部分和检测部分。训练部分:加载图像:load_images函数从指定文件夹加载图像,并为每张图像分配标签(1表示
- SVM支持向量机python实现
努力的小巴掌
经典机器学习支持向量机
支持向量机(SupportVectorMachine,SVM)是一种强大的监督学习算法,主要用于分类和回归任务。SVM的核心思想是找到一个最优的超平面,使得不同类别的数据点能够被尽可能清晰地分开,并且这个超平面与最近的数据点之间有最大的间隔。这些最近的数据点被称为“支持向量”,因为它们决定了超平面的位置和方向。支持向量机的关键概念1.**最大间隔分离器**:-SVM的目标是找到一个超平面,该超平面
- 核方法、核技巧、核函数、核矩阵
第六五签
数学模型矩阵线性代数
核方法(KernelMethods)和核技巧(KernelTrick)是机器学习中处理非线性问题的强大理论框架和实践工具。核心目标:征服非线性许多机器学习算法(如感知机、支持向量机SVM、主成分分析PCA)本质上是寻找线性模式或线性决策边界(直线/平面/超平面)。然而,现实世界的数据往往是线性不可分的,这意味着在原始特征空间中,无法用一条直线(或超平面)完美地将不同类别的数据点分开,或者无法用线性
- 划界与分类的艺术:支持向量机(SVM)的深度解析
忘梓.
杂文支持向量机分类机器学习
划界与分类的艺术:支持向量机(SVM)的深度解析1.引言支持向量机(SupportVectorMachine,SVM)是机器学习中的经典算法,以其强大的分类和回归能力在众多领域得到了广泛应用。SVM通过找到最优超平面来分隔数据,从而实现高效的分类。然而,它在高维数据中的复杂性和核方法的使用也带来了挑战。本文将深入探讨SVM的工作原理、实现技巧、适用场景及其局限性。2.SVM的数学基础与直观理解SV
- 基于CIFAR-10图像数据集的图像分类算法——MATLAB仿真
代码探险狂人
分类matlab机器学习Matlab
基于CIFAR-10图像数据集的图像分类算法——MATLAB仿真图像分类是计算机视觉领域中的重要任务之一,它的目标是将输入的图像分到不同的预定义类别中。在本文中,我们将介绍一种基于CIFAR-10图像数据集和支持向量机(SVM)的图像分类算法,并使用MATLAB进行仿真实现。CIFAR-10是一个常用的图像分类数据集,它包含了10个不同类别的60000个32x32彩色图像。这些类别包括飞机、汽车、
- BERT 模型微调与传统机器学习的对比
MYH516
bert机器学习人工智能
BERT微调与传统机器学习的区别和联系:传统机器学习流程传统机器学习处理文本分类通常包含以下步骤:特征工程:手动设计特征(如TF-IDF、词袋模型)模型训练:使用分类器(如SVM、随机森林、逻辑回归)特征和模型调优:反复调整特征和超参数BERT微调流程BERT微调的典型流程:预训练:使用大规模无标注数据预训练BERT模型数据准备:将文本转换为BERT输入格式(tokenize、添加特殊标记)模型微
- 《Image Classification with Classic and Deep Learning Techniques》复现
几何心凉
IT优质推荐深度学习人工智能
1引言图像分类作为计算机视觉领域的核心任务,旨在将输入图像映射到离散化的语义类别标签,广泛应用于人脸识别、自动驾驶、医疗影像诊断、安防监控等场景。传统方法主要依赖手工设计的特征描述子(如SIFT、HOG、LBP)结合浅层模型(如BoVW、Fisher向量、SVM),以其可解释性和低资源消耗见长,但在端到端优化与高级表征能力方面不及深度学习。近年来,卷积神经网络(CNN)在大规模数据集(如Image
- AI入门——AI大模型、深度学习、机器学习总结
超级-码力
人工智能深度学习机器学习AIGC
以下是对AI深度学习、机器学习相关核心技术的总结与拓展,结合技术演进逻辑与前沿趋势,以全新视角呈现关键知识点一、深度学习:从感知到认知的技术革命核心突破:自动化特征工程的范式变革深度学习通过多层神经网络架构(如卷积神经网络CNN、循环神经网络RNN),实现了从原始数据中自主学习分层特征的能力。相较于传统机器学习依赖人工设计特征(如SVM的核函数、手工提取的图像边缘特征),其核心优势体现在:层次化抽
- OpenCV零基础极速入门:详解跨平台安装与环境配置(一)
WHCIS
opencvopencv人工智能计算机视觉
一、深入理解OpenCV技术生态1.1OpenCV架构解析OpenCV采用模块化设计,核心架构分为四大层次:核心模块(Core):矩阵运算、文件IO、基础数据结构图像处理(Imgproc):滤波、几何变换、特征检测高级视觉(Highgui):GUI交互、视频流处理机器学习(ML):SVM、决策树、神经网络1.2版本选择策略版本类型适用场景典型版本基础版快速原型开发opencv-python4.9.
- 【统计方法】基础分类器: logistic, knn, svm, lda
pen-ai
数据科学支持向量机算法机器学习
均方误差(MSE)理解与分解在监督学习中,均方误差衡量的是预测值与实际值之间的平均平方差:MSE=E[(Y−f^(X))2]\text{MSE}=\mathbb{E}[(Y-\hat{f}(X))^2]MSE=E[(Y−f^(X))2]MSE可以分解为三部分:MSE=Bias2(f^(x0))+Var(f^(x0))+Var(ε)\text{MSE}=\text{Bias}^2(\hat{f}(x
- 08_预处理与缩放
白杆杆红伞伞
machinelearning机器学习支持向量机人工智能
描述机器学习的一些算法(如神经网络、SVM)对数据缩放非常敏感。通常的做法是对特征进行调节,使数据表示更适合与这些算法。scikit-learn中提供了4中数据缩放方法:StandardScaler:确保每个特征平均值为0,方差为1,使所有特征都位于同一量级RobusScaler:工作原理与StandardScaler类似,确保每个特性的统计属性都位于同一范围MinMaxScaler:移动数据,使
- python怎么训练模型_python svm 怎么训练模型
weixin_39529903
python怎么训练模型
展开全部支持2113向量机SVM(SupportVectorMachine)是有监督的分类预测模型,本篇文章5261使用机器学习库scikit-learn中的手写数字数4102据集介绍使用Python对SVM模型进行1653训练并对手写数字进行识别的过程。准备工作手写数字识别的原理是将数字的图片分割为8X8的灰度值矩阵,将这64个灰度值作为每个数字的训练集对模型进行训练。手写数字所对应的真实数字作
- 核函数:解锁支持向量机的强大能力
从零开始学习人工智能
大数据人工智能机器学习
在机器学习的世界中,支持向量机(SVM)是一种强大的分类算法,而核函数则是其背后的“魔法”,让SVM能够处理复杂的非线性问题。今天,我们就来深入探讨核函数的奥秘,看看它们是如何帮助SVM在高维空间中找到最佳决策边界的。一、核函数是什么?核函数本质上是一种计算两个向量在高维空间中内积的方法,但它避免了直接将数据映射到高维空间的复杂计算。通过核函数,我们可以巧妙地将原始数据从低维空间映射到高维空间,从
- 支持向量机(SVM):解锁数据分类与回归的强大工具
从零开始学习人工智能
人工智能开源性能优化
在机器学习的世界中,支持向量机(SupportVectorMachine,简称SVM)一直以其强大的分类和回归能力而备受关注。本文将深入探讨SVM的核心功能,以及它如何在各种实际问题中发挥作用。一、SVM是什么?支持向量机是一种监督学习算法,主要用于分类和回归任务。它的核心思想是通过在特征空间中找到一个最优的分界面(超平面),将不同类别的数据点分隔开,或者拟合出一个回归函数来预测目标值。SVM的强
- JVM 视角下的指针压缩技术实现
javajvm
1准备1.1FBIWARNING文章异常啰嗦且绕弯。1.2版本使用openjdk24为跟踪的源码。fork仓库:https://github.com/openjdk/jdk/2源码追踪2.1oopDesc在JVM中,Java对象的最高层级抽象是oopDesc。代码路径在hotspot/share/oops/oop.hpp中。classoopDesc{friendclassVMStructs;fri
- 双路物理CPU机器上安装Ubuntu并部署KVM以实现系统多开
欧先生^_^
ubuntulinux运维
在双路物理CPU机器上安装Ubuntu并部署KVM以实现系统多开,并追求性能最优,需要从硬件、宿主机系统、KVM配置、虚拟机配置等多个层面进行优化。以下是详细的操作指南和优化建议:阶段一:BIOS/UEFI设置优化(重启进入)启用虚拟化技术:IntelCPU:IntelVT-x(VirtualizationTechnology)AMDCPU:AMD-V(SVM-SecureVirtualMachi
- 【Python深度学习(第二版)(2)】深度学习之前:机器学习简史
roman_日积跬步-终至千里
#python深度学习(第二版)深度学习机器学习人工智能
文章目录一.深度学习的起源1.概率建模--机器学习分类器2.早期神经网络--反向传播算法的转折3.核方法--忽略神经网络4.决策树、随机森林和梯度提升机5.神经网络替代svm与决策树二.深度学习与机器学习有何不同可以这样说,当前工业界所使用的大部分机器学习算法不是深度学习算法。深度学习不一定总是解决问题的正确工具:有时没有足够的数据,深度学习不适用;有时用其他算法可以更好地解决问题。如果第一次接触
- Python 学习日记 day15
heard_222532
Python学习日记python学习机器学习
@浙大疏锦行CRWUBearingsSVM_Fault_Classificationimportnumpyasnpfromsklearn.datasetsimportmake_classificationfromsklearn.model_selectionimporttrain_test_splitfromsklearn.linear_modelimportLogisticRegressionf
- 支持向量机(SVM)例题
phoenix@Capricornus
PR书稿支持向量机算法机器学习
对于图中所示的线性可分的20个样本数据,利用支持向量机进行预测分类,有三个支持向量A(0,2)A(0,2)A(0,2)、B(2,0)B(2,0)B(2,0)和C(−1,−1)C(-1,-1)C(−1,−1)。求支持向量机的线性判别函数。删除点A后,支持向量是否变化?求解:三个点,建立联立方程组:{w1xA+w2yA+b=1w1xB+w2yB+b=1w1xC+w2yC+b=−1\begin{case
- 支持向量机SVM:从数学原理到实际应用
代码很孬写
支持向量机算法机器学习语言模型自然语言处理ai人工智能
前言本篇文章全面深入地探讨了支持向量机(SVM)的各个方面,从基本概念、数学背景到Python和PyTorch的代码实现。文章还涵盖了SVM在文本分类、图像识别、生物信息学、金融预测等多个实际应用场景中的用法。一、引言背景支持向量机(SVM,SupportVectorMachines)是一种广泛应用于分类、回归、甚至是异常检测的监督学习算法。自从Vapnik和Chervonenkis在1995年首
- 计算机视觉(图像算法工程师)学习路线
陳錄生
计算机视觉学习人工智能
计算机视觉学习路线Python基础常量与变量列表、元组、字典、集合运算符循环条件控制语句函数面向对象与类包与模块Numpy+Pandas+Matplotlibnumpy机器学习回归问题线性回归Lasso回归Ridge回归多项式回归决策树回归AdaBoostGBDT随机森林回归分类问题逻辑回归决策树ID3-信息增益C4.5-信息增益率随机森林SVMNaiveBayes聚类问题K-MeansMDSCA
- 基于C++实现的深度学习(cnn/svm)分类器Demo
长长同学
深度学习c++cnn
1.项目简介本项目是一个基于C++实现的深度学习与传统机器学习结合的分类器Demo,主要流程为:从CSV文件读取样本数据用卷积神经网络(CNN)进行特征提取用支持向量机(SVM)进行最终分类支持模型的保存与加载提供DLL接口,方便与其他软件集成网盘地址:https://pan.baidu.com/s/1VoFdPAzueITcl_Up6hR_Wg2.主要结构与全局变量Sample结构体:存储单个样
- python打卡DAY25
Bugabooo
python开发语言
##注入所需库importpandasaspdimportseabornassnsimportmatplotlib.pyplotaspltimportrandomimportnumpyasnpimporttimeimportshap#fromsklearn.svmimportSVC#支持向量机分类器##fromsklearn.neighborsimportKNeighborsClassifier#
- python打卡DAY20
Bugabooo
python开发语言
##注入所需库importpandasaspdimportseabornassnsimportmatplotlib.pyplotaspltimportrandomimportnumpyasnpimporttimeimportshapfromsklearn.svmimportSVC#支持向量机分类器#fromsklearn.neighborsimportKNeighborsClassifier#K近
- python 打卡DAY27
Bugabooo
python开发语言
##注入所需库importpandasaspdimportseabornassnsimportmatplotlib.pyplotaspltimportrandomimportnumpyasnpimporttimeimportshap#fromsklearn.svmimportSVC#支持向量机分类器##fromsklearn.neighborsimportKNeighborsClassifier#
- java代码生成简写
优秀135
java
1.psvm2.sout注意:idea无法快捷键输出System.out.println();并且即使手动输入也会报错cannotresolvesymbol“println”,原因是没写main函数。。。3.数组名.sout或者变量名.sout4.数组名.fori或者数字.fori(普通for)5.单列集合名.for(增强for)
- 计算机视觉与深度学习 | Matlab实现INFO-BiTCN-SVM向量加权优化算法优化双向时间卷积神经网络结合支持向量机时间序列预测,含优化前后对比(Matlab完整源码和数据)
单北斗SLAMer
cnnlstmmatlab深度学习机器学习
以下是一个基于Matlab2023b实现的INFO-BiTCN-SVM时间序列预测系统的完整代码框架,包含智能优化算法、双向时间卷积网络与支持向量机的混合模型以及多指标评估体系。代码经过模块化设计,可直接运行并复现实验结果。%%主程序:INFO-BiTCN-SVM时间序列预测系统clc;clear;closeall;warningoff;%设置随机种子保证可重复性rng(2024);%加载/生成仿
- sql统计相同项个数并按名次显示
朱辉辉33
javaoracle
现在有如下这样一个表:
A表
ID Name time
------------------------------
0001 aaa 2006-11-18
0002 ccc 2006-11-18
0003 eee 2006-11-18
0004 aaa 2006-11-18
0005 eee 2006-11-18
0004 aaa 2006-11-18
0002 ccc 20
- Android+Jquery Mobile学习系列-目录
白糖_
JQuery Mobile
最近在研究学习基于Android的移动应用开发,准备给家里人做一个应用程序用用。向公司手机移动团队咨询了下,觉得使用Android的WebView上手最快,因为WebView等于是一个内置浏览器,可以基于html页面开发,不用去学习Android自带的七七八八的控件。然后加上Jquery mobile的样式渲染和事件等,就能非常方便的做动态应用了。
从现在起,往后一段时间,我打算
- 如何给线程池命名
daysinsun
线程池
在系统运行后,在线程快照里总是看到线程池的名字为pool-xx,这样导致很不好定位,怎么给线程池一个有意义的名字呢。参照ThreadPoolExecutor类的ThreadFactory,自己实现ThreadFactory接口,重写newThread方法即可。参考代码如下:
public class Named
- IE 中"HTML Parsing Error:Unable to modify the parent container element before the
周凡杨
html解析errorreadyState
错误: IE 中"HTML Parsing Error:Unable to modify the parent container element before the child element is closed"
现象: 同事之间几个IE 测试情况下,有的报这个错,有的不报。经查询资料后,可归纳以下原因。
- java上传
g21121
java
我们在做web项目中通常会遇到上传文件的情况,用struts等框架的会直接用的自带的标签和组件,今天说的是利用servlet来完成上传。
我们这里利用到commons-fileupload组件,相关jar包可以取apache官网下载:http://commons.apache.org/
下面是servlet的代码:
//定义一个磁盘文件工厂
DiskFileItemFactory fact
- SpringMVC配置学习
510888780
springmvc
spring MVC配置详解
现在主流的Web MVC框架除了Struts这个主力 外,其次就是Spring MVC了,因此这也是作为一名程序员需要掌握的主流框架,框架选择多了,应对多变的需求和业务时,可实行的方案自然就多了。不过要想灵活运用Spring MVC来应对大多数的Web开发,就必须要掌握它的配置及原理。
一、Spring MVC环境搭建:(Spring 2.5.6 + Hi
- spring mvc-jfreeChart 柱图(1)
布衣凌宇
jfreechart
第一步:下载jfreeChart包,注意是jfreeChart文件lib目录下的,jcommon-1.0.23.jar和jfreechart-1.0.19.jar两个包即可;
第二步:配置web.xml;
web.xml代码如下
<servlet>
<servlet-name>jfreechart</servlet-nam
- 我的spring学习笔记13-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java P
- java 线程池使用 Runnable&Callable&Future
antlove
javathreadRunnablecallablefuture
1. 创建线程池
ExecutorService executorService = Executors.newCachedThreadPool();
2. 执行一次线程,调用Runnable接口实现
Future<?> future = executorService.submit(new DefaultRunnable());
System.out.prin
- XML语法元素结构的总结
百合不是茶
xml树结构
1.XML介绍1969年 gml (主要目的是要在不同的机器进行通信的数据规范)1985年 sgml standard generralized markup language1993年 html(www网)1998年 xml extensible markup language
- 改变eclipse编码格式
bijian1013
eclipse编码格式
1.改变整个工作空间的编码格式
改变整个工作空间的编码格式,这样以后新建的文件也是新设置的编码格式。
Eclipse->window->preferences->General->workspace-
- javascript中return的设计缺陷
bijian1013
JavaScriptAngularJS
代码1:
<script>
var gisService = (function(window)
{
return
{
name:function ()
{
alert(1);
}
};
})(this);
gisService.name();
&l
- 【持久化框架MyBatis3八】Spring集成MyBatis3
bit1129
Mybatis3
pom.xml配置
Maven的pom中主要包括:
MyBatis
MyBatis-Spring
Spring
MySQL-Connector-Java
Druid
applicationContext.xml配置
<?xml version="1.0" encoding="UTF-8"?>
&
- java web项目启动时自动加载自定义properties文件
bitray
javaWeb监听器相对路径
创建一个类
public class ContextInitListener implements ServletContextListener
使得该类成为一个监听器。用于监听整个容器生命周期的,主要是初始化和销毁的。
类创建后要在web.xml配置文件中增加一个简单的监听器配置,即刚才我们定义的类。
<listener>
<des
- 用nginx区分文件大小做出不同响应
ronin47
昨晚和前21v的同事聊天,说到我离职后一些技术上的更新。其中有个给某大客户(游戏下载类)的特殊需求设计,因为文件大小差距很大——估计是大版本和补丁的区别——又走的是同一个域名,而squid在响应比较大的文件时,尤其是初次下载的时候,性能比较差,所以拆成两组服务器,squid服务于较小的文件,通过pull方式从peer层获取,nginx服务于较大的文件,通过push方式由peer层分发同步。外部发布
- java-67-扑克牌的顺子.从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的.2-10为数字本身,A为1,J为11,Q为12,K为13,而大
bylijinnan
java
package com.ljn.base;
import java.util.Arrays;
import java.util.Random;
public class ContinuousPoker {
/**
* Q67 扑克牌的顺子 从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的。
* 2-10为数字本身,A为1,J为1
- 翟鸿燊老师语录
ccii
翟鸿燊
一、国学应用智慧TAT之亮剑精神A
1. 角色就是人格
就像你一回家的时候,你一进屋里面,你已经是儿子,是姑娘啦,给老爸老妈倒怀水吧,你还觉得你是老总呢?还拿派呢?就像今天一样,你们往这儿一坐,你们之间是什么,同学,是朋友。
还有下属最忌讳的就是领导向他询问情况的时候,什么我不知道,我不清楚,该你知道的你凭什么不知道
- [光速与宇宙]进行光速飞行的一些问题
comsci
问题
在人类整体进入宇宙时代,即将开展深空宇宙探索之前,我有几个猜想想告诉大家
仅仅是猜想。。。未经官方证实
1:要在宇宙中进行光速飞行,必须首先获得宇宙中的航行通行证,而这个航行通行证并不是我们平常认为的那种带钢印的证书,是什么呢? 下面我来告诉
- oracle undo解析
cwqcwqmax9
oracle
oracle undo解析2012-09-24 09:02:01 我来说两句 作者:虫师收藏 我要投稿
Undo是干嘛用的? &nb
- java中各种集合的详细介绍
dashuaifu
java集合
一,java中各种集合的关系图 Collection 接口的接口 对象的集合 ├ List 子接口 &n
- 卸载windows服务的方法
dcj3sjt126com
windowsservice
卸载Windows服务的方法
在Windows中,有一类程序称为服务,在操作系统内核加载完成后就开始加载。这里程序往往运行在操作系统的底层,因此资源占用比较大、执行效率比较高,比较有代表性的就是杀毒软件。但是一旦因为特殊原因不能正确卸载这些程序了,其加载在Windows内的服务就不容易删除了。即便是删除注册表中的相 应项目,虽然不启动了,但是系统中仍然存在此项服务,只是没有加载而已。如果安装其他
- Warning: The Copy Bundle Resources build phase contains this target's Info.plist
dcj3sjt126com
iosxcode
http://developer.apple.com/iphone/library/qa/qa2009/qa1649.html
Excerpt:
You are getting this warning because you probably added your Info.plist file to your Copy Bundle
- 2014之C++学习笔记(一)
Etwo
C++EtwoEtwoiterator迭代器
已经有很长一段时间没有写博客了,可能大家已经淡忘了Etwo这个人的存在,这一年多以来,本人从事了AS的相关开发工作,但最近一段时间,AS在天朝的没落,相信有很多码农也都清楚,现在的页游基本上达到饱和,手机上的游戏基本被unity3D与cocos占据,AS基本没有容身之处。so。。。最近我并不打算直接转型
- js跨越获取数据问题记录
haifengwuch
jsonpjsonAjax
js的跨越问题,普通的ajax无法获取服务器返回的值。
第一种解决方案,通过getson,后台配合方式,实现。
Java后台代码:
protected void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
String ca
- 蓝色jQuery导航条
ini
JavaScripthtmljqueryWebhtml5
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/39.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery鼠标悬停上下滑动导航条 - 柯乐义<
- linux部署jdk,tomcat,mysql
kerryg
jdktomcatlinuxmysql
1、安装java环境jdk:
一般系统都会默认自带的JDK,但是不太好用,都会卸载了,然后重新安装。
1.1)、卸载:
(rpm -qa :查询已经安装哪些软件包;
rmp -q 软件包:查询指定包是否已
- DOMContentLoaded VS onload VS onreadystatechange
mutongwu
jqueryjs
1. DOMContentLoaded 在页面html、script、style加载完毕即可触发,无需等待所有资源(image/iframe)加载完毕。(IE9+)
2. onload是最早支持的事件,要求所有资源加载完毕触发。
3. onreadystatechange 开始在IE引入,后来其它浏览器也有一定的实现。涉及以下 document , applet, embed, fra
- sql批量插入数据
qifeifei
批量插入
hi,
自己在做工程的时候,遇到批量插入数据的数据修复场景。我的思路是在插入前准备一个临时表,临时表的整理就看当时的选择条件了,临时表就是要插入的数据集,最后再批量插入到数据库中。
WITH tempT AS (
SELECT
item_id AS combo_id,
item_id,
now() AS create_date
FROM
a
- log4j打印日志文件 如何实现相对路径到 项目工程下
thinkfreer
Weblog4j应用服务器日志
最近为了实现统计一个网站的访问量,记录用户的登录信息,以方便站长实时了解自己网站的访问情况,选择了Apache 的log4j,但是在选择相对路径那块 卡主了,X度了好多方法(其实大多都是一样的内用,还一个字都不差的),都没有能解决问题,无奈搞了2天终于解决了,与大家分享一下
需求:
用户登录该网站时,把用户的登录名,ip,时间。统计到一个txt文档里,以方便其他系统调用此txt。项目名
- linux下mysql-5.6.23.tar.gz安装与配置
笑我痴狂
mysqllinuxunix
1.卸载系统默认的mysql
[root@localhost ~]# rpm -qa | grep mysql
mysql-libs-5.1.66-2.el6_3.x86_64
mysql-devel-5.1.66-2.el6_3.x86_64
mysql-5.1.66-2.el6_3.x86_64
[root@localhost ~]# rpm -e mysql-libs-5.1