- Xinference如何注册自定义模型
玩人工智能的辣条哥
人工智能AI大模型Xinference
环境:Xinference问题描述:Xinference如何注册自定义模型解决方案:1.写个model_config.json,内容如下{"version":1,"context_length":2048,"model_name":"custom-llama-3","model_lang":["en","ch"],"model_ability":["generate","chat"],"model
- 【大模型】triton inference server
idiotyi
大模型自然语言处理语言模型人工智能
前言:tritoninferenceserver常用于大模型部署,可以采用http或GRPC调用,支持大部分的backend,单GPU、多GPU都可以支持,CPU也支持。本文主要是使用tritoninferenceserver部署大模型的简单流程示例。目录1.整体流程2.搭建本地仓库3.服务端代码4.启动服务5.客户端调用1.整体流程搭建模型仓库模型配置服务端调用代码docker启动服务客户端调用
- Error - cannot open input file /postproc/nlscfg.inf 错误解决
技术无疆
WindowsCEinputfilecommandwindows
执行makeimg命令的时候出现一下错误:makeimg:Creatingnlscfg.outbecausenlscfg.infdoesn'texist.makeimg:runcommand:fmerge-nlsnlscfg.outnlscfg.infError-cannotopeninputfile/postproc/nlscfg.inffmergeforWindowsCE(Release)(B
- 使用TensorRT对YOLOv8模型进行加速推理
fengbingchun
DeepLearningCUDA/TensorRTYOLOv8TensorRT
这里使用GitHub上shouxieai的infer框架对YOLOv8模型进行加速推理,操作过程如下所示:1.配置环境,依赖项,包括:(1).CUDA:11.8(2).cuDNN:8.7.0(3).TensorRT:8.5.3.1(4).ONNX:1.16.0(5).OpenCV:4.10.02.cloneinfer代码:https://github.com/shouxieai/infer3.使用
- 深度学习部署:Triton(Triton inference server)【旧称:TensorRT serving,专门针对TensorRT设计的服务器框架,后来变为Triton,支持其他推理后端】
u013250861
#LLM/部署深度学习人工智能
triton作为一个NVIDIA开源的商用级别的服务框架,个人认为很好用而且很稳定,API接口的变化也不大,我从2020年的20.06切换到2022年的22.06,两个大版本切换,一些涉及到代码的工程变动很少,稍微修改修改就可以直接复用,很方便。本系列讲解的版本也是基于22.06。本系列讲解重点是结合实际的应用场景以及源码分析,以及写一些triton周边的插件、集成等。非速成,适合同样喜欢深入的小
- LLM系列 | 36:Google最新开源大模型:Gemma 2介绍及其微调(下篇)
JasonLiu1919
开源
引言环境安装数据准备下载处理模型训练模型inference结果gemma-2-9bgemma-2-9b-it引言低头观落日,引手摘飞星。小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖黑神话的小女孩。本文紧接前文Google最新开源大语言模型:Gemma2介绍及其微调(上篇),介绍如何用中文语料微调Gemma2模型。如想与小编进一步交流,欢迎在《小窗幽记机器学习》上获取小编微信号,或者直接
- mindie与mindspore是什么关系?
小乐快乐
python网络
问题描述:MindIE(MindInferenceEngine,推理引擎)是华为昇腾针对AI全场景业务的推理加速套件。MindSpore是一种适用于端边云场景的新型开源深度学习训练/推理框架。从字面理解,MindIE和MindSpore都能做推理,区别在哪?MindIE未开源,MindSpore已开源,原因是啥?这两个最终会不会统一?解决方案:MindIE是昇腾提供的新的大模型推理解决方案,支持使
- 探索LangChain-Chatchat 0.3:一体化Agent与强大RAG模型的全面入门指南
爱喝白开水a
langchain人工智能aiai大模型大语言模型AgentRAG
介绍LangChain-Chatchat支持RAG和Agent0.3版本跟大模型解耦,支持Xinference、Ollama、LocalAI、FastChat、OneAPI,可以非常方便的切换各个模型,本文只是介绍XinferenceXorbitsInference(Xinference)是一个开源平台,用于简化各种AI模型的运行和集成。借助Xinference,您可以使用任何开源LLM、嵌入模型
- [论文笔记] LLM模型剪枝
心心喵
论文笔记论文阅读剪枝算法
AttentionIsAllYouNeedButYouDon’tNeedAllOfItForInferenceofLargeLanguageModelsLLaMA2在剪枝时,跳过ffn和跳过fulllayer的效果差不多。相比跳过ffn/fulllayer,跳过attentionlayer的影响会更小。跳过attentionlayer:7B/13B从100%参数剪枝到66%,平均指标只下降1.7~
- 百度飞浆目标检测PPYOLOE模型在PC端、Jetson上的部署(python)
代码能跑就可以
百度目标检测python学习计算机视觉笔记
部署目标检测模型前,需要配置好paddlepaddle的环境:开始使用_飞桨-源于产业实践的开源深度学习平台(paddlepaddle.org.cn)PC端和Jetson板卡端的部署方法相同,如下(直接放置部署和测试代码):importpaddle.inferenceimportcv2importnumpyasnpimporttimefrompaddle.inferenceimportConfig
- 《BERT基础教程:Transformer大模型实战》读书笔记
johnny233
读书笔记人工智能
概念BERT,BidirectionalEncoderRepresentationsfromTransformers,多Transformer的双向编码器表示法。RNN,recurrentneuralnetwork,循环神经网络。LSTM,longshort-termmemory,长短期记忆网络。NLI,Naturallanguageinference,自然语言推理。知识蒸馏(knowledged
- 【大模型】大模型 CPU 推理之 llama.cpp
szZack
大语言模型人工智能大模型人工智能llama.cpp
【大模型】大模型CPU推理之llama.cppllama.cpp安装llama.cppMemory/DiskRequirementsQuantization测试推理下载模型测试参考llama.cpp描述Themaingoalofllama.cppistoenableLLMinferencewithminimalsetupandstate-of-the-artperformanceonawideva
- 跟着Cell学单细胞转录组分析(十二):转录因子分析
KS科研分享与服务
转录因子分析可以了解细胞异质性背后的基因调控网络的异质性。转录因子分析也是单细胞转录组常见的分析内容,R语言分析一般采用的是SCENIC包,具体原理可参考两篇文章。1、《SCENIC:single-cellregulatorynetworkinferenceandclustering》。2、《AscalableSCENICworkflowforsingle-cellgeneregulatoryne
- Python酷库之旅-第三方库Pandas(098)
神奇夜光杯
pythonpandas开发语言人工智能标准库及第三方库excel学习与成长
目录一、用法精讲421、pandas.DataFrame.infer_objects方法421-1、语法421-2、参数421-3、功能421-4、返回值421-5、说明421-6、用法421-6-1、数据准备421-6-2、代码示例421-6-3、结果输出422、pandas.DataFrame.copy方法422-1、语法422-2、参数422-3、功能422-4、返回值422-5、说明422
- 【论文阅读】GLiRA: Black-Box Membership Inference Attack via Knowledge Distillation
Bosenya12
模型窃取科研学习论文阅读知识蒸馏成员推理攻击黑盒
摘要While(虽然)DeepNeuralNetworks(DNNs)havedemonstratedremarkableperformanceintasksrelatedtoperception(感知)andcontrol(控制),therearestillseveralunresolvedconcerns(未解决的问题)regardingtheprivacyoftheirtrainingdat
- Python连接huggingface的API接口
young
服务器运维
之前不明白这个过程,现在记录一下。我的原本目的:在本地写Python代码,然后调用huggingface中某个项目中模型的接口,从而完成模型的调用。以期达到我在本地键入输入,得到模型的输出,从而测试模型效果。之前的代码以及出现的问题:之前的代码:importrequestsAPI_URL="https://api-inference.huggingface.co/models/flax-sente
- 2018-11-20复盘日志 第十三周
土管一班44张宇平
1,从本篇文章/音频/视频中我学到的最重要的概念在用英语叙述一个故事的时候,需要写发生的背景以及时间地点人物,还有一些具体的细节,把故事写的真实、有感情。2,我在本片文章/音频/视频中学到的怦然心动的单词portableadj.轻便的,手提的distinction.n.优秀,卓越fix.vt修理3,在本片文章/音频/视频中我最喜欢的一句话Nobodycanmakeyoufeelinferiorwi
- Memory Wall in Neural Network Inference
简vae
软硬件结合PIMforAIgpu算力cnnlstmtransformer
MemoryWallinNeuralNetworkInference神经网络推理的瓶颈在于访存带宽,通常无法发挥出加速器的全部算力。本文总结了目前常用的推理加速器及其设计,并分析了常用神经网络的访存瓶颈。文章大部分内容参考自ComputerArchitecture:AQuantitativeApproach。1Computecentricaccelerators1.1CPU一般来说,CPU擅长于做
- Quantitative Analysis: PIM Chip Demands for LLAMA-7B inference
简vae
软硬件结合neardataprocessingPIMforAIllamatransformer
1Architecture如果将LLAMA-7B模型参数量化为4bit,则存储模型参数需要3.3GB。那么,至少PIMchip的存储至少要4GB。AiM单个bank为32MB,单个die512MB,至少需要8个die的芯片。8个die集成在一个芯片上。提供8×16bank级别的访存带宽。整个推理过程完全下放至PIM。CPU把prompt传给ControllerController控制推理过程,将推
- MTR++论文阅读
ZHANG8023ZHEN
论文阅读
https://zhuanlan.zhihu.com/p/654070149文章亮点:DenseFuturePredictionforAllAgent:将预测的结果也encode起来,用于平衡障碍物之间的预测结果。不过在infer的时候这一部分不会进行用数据集聚类获得query轨迹点(goal点):将goal点也进行Transformer,并且让上一帧模型的结果用于下一帧的模型推理,可以使模型的推
- 解决Ubuntu下网络适配器桥接模式下ping网址不通的情况
十万个秋刀鱼
桥接模式
问题反应:ping不通网址打开虚拟机中的设置,更改网络适配器为NAT模式确定保存更改之后,退出输入如下命令。命令1:sudo/etc/network/inferfaces命令2:sudo/etc/init.d/network/restart
- OpenCV DNN 活体检测项目环境配置等各阶段tips
十橙
MachineLearningOpenCVopencvdnn人工智能活体检测
date:2020-09-2214:53资料来源《OpenCV深度学习应用与性能优化实践》第八章。在复现这个项目的时候发现一些可以调整的小tips。环境配置阶段使用conda创建python工作环境时,注释掉requirems.txt里的opencv-python-inference-engine==4.1.2.1,安装OpenVINO时包含这个了,如果使用requirements里的版本,ims
- Drool学习记录(二) Kie Session、Truth maintenance
11c170319da1
参考Drools官方文档(3.1KIESession和3.2InferenceandtruthmaintenanceintheDroolsengine),学习关于KieSession和Truthmaintenace的内容。这两节内容虽然很基础,但是感觉官方文档说的还是不够明了,尤其是StatelessSession和StatefulSession的区别,和insert()和insertLogica
- 推理系统学习笔记
Loganer
Python笔记学习笔记
一些学习资料最近对MLsys比较感兴趣,遂找些资料开始学习一下https://fazzie-key.cool/2023/02/21/MLsys/https://qiankunli.github.io/2023/12/16/llm_inference.htmlhttps://dlsyscourse.orghttps://github.com/chenzomi12/DeepLearningSystem
- SLICER:从单细胞RNA-seq数据推断分支的非线性细胞轨迹
生信编程日常
image.pngSLICER是一种构建轨迹的算法,该轨迹描述了某些生物学过程中基因表达的变化。SLICER可以捕获高度非线性的基因表达变化,自动选择与该过程相关的基因,并检测轨迹中的多个分支和loopfeatures。SLICER(SelectiveLocallyLinearInferenceofCellularExpressionRelationships),是一种使用局部线性嵌入(LLE)重
- Hexo+Icarus3+live2d给博客添加看板娘
Mr__joe
补坑之前写过一篇icarus添加看板娘的教程但是版本是标签然后插入这行修改后完整的head.jsxconst{Component}=require('inferno');constMetaTags=require('hexo-component-inferno/lib/view/misc/meta');constOpenGraph=require('hexo-component-inferno/l
- Head Boxing
乐在沟通_08c6
"HeadBoxing"isaQversionfightinggame.Itlookslikeitissimpleandeasytoplay.Itsoperabilityisnotinferior.Ithasanexcellentcombatskillsystemandcanbeusedinfloating,combing,andattacking.Enthusiasmincreasesenrol
- 【Meta-Al】llama GPT 测试
0x13
llamagpt人工智能chatgpt
2023-4-28更新:github有兄弟合并+量化了7B、13B的权重,Chinese-Alpaca项目部署体验更简单:GitHub-ymcui/Chinese-LLaMA-Alpaca:中文LLaMA&Alpaca大语言模型+本地CPU/GPU部署(ChineseLLaMA&AlpacaLLMs)github地址:GitHub-facebookresearch/llama:Inferencec
- diffusers单机多卡推理(全网首发)
半度、
AI作画
起因博主在部署InstantID项目时,显存不够,想要将模型分散在多张卡上。翻到这篇发现是分布式推理,博主一直以为这个可以达到我想要的效果,但是效果是多线程并行推理,并不能将一个模型切片在多个GPU上。DistributedInferencewithAccelerate好运的是在Accelerate说明文档中我找到了下面的文章,使用init_empty_weights在加载模型时不加载权重,loa
- DEEP VARIATIONAL INFORMATION BOTTLENECK
Aiqz
DEEPVARIATIONALINFORMATIONBOTTLENECK论文“DeepVariationalinformationbottleneck”阅读笔记作者:艾庆忠时间:2018.12.04本人为小白一个,此文作为学习笔记,暂存于此。第一部分准备内容在阅读此论文之前,需对VAE、VariationalInference(变分推断)以及InformationBottleneck有所了解,借此
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$