# -*- coding: cp936 -*- #基于协同过滤的推荐系统 critics={'Lisa Rose':{'Lady in the Water':2.5,'Snakes on a Plane':3.5,'Just My Luck':3.0, 'Superman Returns':3.5,'You,Me and Dupree':2.5,'The Night Listener':3.0}, 'Gene Seymour':{'Lady in the Water':3.0,'Snakes on a Plane':3.5,'Just My Luck':1.5, 'Superman Returns':5.0,'You,Me and Dupree':3.5,'The Night Listener':3.0}, 'Michael Phillips':{'Lady in the Water':2.5,'Snakes on a Plane':3.0,'Just My Luck':3.0, 'Superman Returns':3.5,'You,Me and Dupree':2.5,'The Night Listener':4.0}, 'Claudia Puig':{'Lady in the Water':2.5,'Snakes on a Plane':3.5,'Just My Luck':3.0, 'Superman Returns':4.0,'You,Me and Dupree':2.5,'The Night Listener':4.5}, 'Toby':{'Snakes on a Plane':4.5,'Superman Returns':4.0,'You,Me and Dupree':1.0}} from math import sqrt def sim_distance(prefs,person1,person2): si={} for item in prefs[person1]: if item in prefs[person2]: si[item]=1 if len(si)==0: return 0 sum_of_squares=sum([pow(prefs[person1][item]-prefs[person2][item],2) for item in prefs[person1] if item in prefs[person2]]) return 1/(1+sqrt(sum_of_squares)) def sim_pearson(prefs,p1,p2): si={} for item in prefs[p1]: if item in prefs[p2]: si[item]=1 n=len(si) if n==0: return 1 sum1=sum([prefs[p1][it] for it in si]) sum2=sum([prefs[p2][it] for it in si]) sum1Sq=sum([pow(prefs[p1][it],2) for it in si]) sum2Sq=sum([pow(prefs[p2][it],2) for it in si]) pSum=sum([prefs[p1][it]*prefs[p2][it] for it in si]) num=pSum-(sum1*sum2/n) den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n)) if den==0: return 0 r=num/den return r def topMatches(prefs,person,n=5,similarity=sim_pearson): scores=[(similarity(prefs,person,other),other) for other in prefs if other!=person] scores.sort() scores.reverse() return scores[0:n] def getRecommendations(prefs,person,similarity=sim_pearson): totals={} simSums={} for other in prefs: if other==person: continue sim=similarity(prefs,person,other) if sim<=0: continue for item in prefs[other]: if item not in prefs[person] or prefs[person][item]==0: totals.setdefault(item,0) totals[item]+=prefs[other][item]*sim simSums.setdefault(item,0) simSums[item]+=sim rankings=[(total/simSums[item],item) for item,total in totals.items()] rankings.sort() rankings.reverse() return rankings