【STL源码剖析读书笔记】【第5章】关联式容器之RB-tree

1、 二叉树:任何节点最多只有两个子节点,这两个子节点分别称为左子节点和右子节点。

2、 二叉搜索树:任何节点的键值一定大于其左子树中的每一个节点的键值,小于其右子树中的每一个节点的键值。

3、 红黑树不仅是一个二叉搜索树,还必须满足以下条件:

1)  每个节点不是红色就是黑色。

2)  根节点为黑色。

3)  如果节点为红色,其子节点必须为黑色。

4)  任意一个节点到到NULL(树尾端)的任何路径,所含之黑色节点数必须相同。

根据规则4),新增节点必须为红色;根据规则3),新增节点之父节点必须为黑色。当新增节点根据二叉搜索树的规则到达其插入点时,却未能符合上述条件时,就必须调整颜色并旋转树形,如下图:

4、 红黑树插入节点

先为某些特殊节点定义一些代名:X代表新节点,P为其父节点,G为其祖父节点,S为其叔父节点,GG为其曾祖父节点。

插入操作分为以下几种情况:

一、P为黑

直接插入X,操作完成。

二、P为红

  情况1S为黑且X为外侧插入。

PG做一次右旋转操作并改变PG的颜色,即可。

  情况2S为黑且X为内侧插入。

PX做一次左旋转操作并改变GX的颜色,然后再对G做一次右旋转操作,即可。

【STL源码剖析读书笔记】【第5章】关联式容器之RB-tree_第1张图片

 情况3S为红且X为外侧插入。

PG做一次右旋转操作改变X的颜色。此时如果GG为黑,操作完成。但如果GG为红,见情况4

【STL源码剖析读书笔记】【第5章】关联式容器之RB-tree_第2张图片

情况4S为红且X为外侧插入,GG为红。

PG做一次右旋转操作改变X的颜色。GG为红,还得持续往上做,知道不再有父子连续为红的情况。

【STL源码剖析读书笔记】【第5章】关联式容器之RB-tree_第3张图片

5、为避免插入节点的情况4,可以用自顶向下的方法:假设新增节点为A,就顺着A的路径,当遇到一个节点X的两个儿子都为红,就将X改为红,两个儿子改为黑。当X的父节点也为红使用情况1或情况2中的方法做调整。

【STL源码剖析读书笔记】【第5章】关联式容器之RB-tree_第4张图片

【STL源码剖析读书笔记】【第5章】关联式容器之RB-tree_第5张图片

6、红黑树节点结构

typedef bool __rb_tree_color_type;
const __rb_tree_color_type __rb_tree_red = false;     // 红色为0
const __rb_tree_color_type __rb_tree_black = true; // 黑色为1

struct __rb_tree_node_base
{
  typedef __rb_tree_color_type color_type;
  typedef __rb_tree_node_base* base_ptr;

  color_type color;     // 节点颜色,红色或黑色
  base_ptr parent;      // 该指针指向其父节点
  base_ptr left;        // 指向左节点
  base_ptr right;       // 指向右节点

  static base_ptr minimum(base_ptr x)
  {
	 while (x->left != 0) x = x->left; //一直向左走,找到最小值
	 return x;                            
  }

  static base_ptr maximum(base_ptr x)
  {
    while (x->right != 0) x = x->right; //一直向右走,找到最大值
    return x;                           
  }
};

template <class Value>
struct __rb_tree_node : public __rb_tree_node_base
{
  typedef __rb_tree_node<Value>* link_type;
  Value value_field;   //节点值
};

7、 红黑树的迭代器

SGI将RB-tree迭代器实现分为两层。图5-16是两层节点结构和双层迭代器结构间的关系,其中主要意义是:__rb_tree_node继承自__rb_tree_node_base,__rb_tree_iterator继承自__rb_tree_base_iterator。

【STL源码剖析读书笔记】【第5章】关联式容器之RB-tree_第6张图片

8、红黑树的元素操作

红黑树提供了两种插入操作:insert_unique()和insert_equal(),前者表示被插入节点的键值在树中插入独一无二,后者表示被插入节点的键值可以重复。

红黑树是一个二叉搜索树,元素的搜寻find()是其拿手项目。

9红黑树源码

 //stl_tree.h
#ifndef __SGI_STL_INTERNAL_TREE_H
#define __SGI_STL_INTERNAL_TREE_H


/*
Red-black tree(红黑树)class,用来当做SLT关联容器的底层机制(如set,multiset,map,
multimap)。里面所用的insertion和deletion方法以Cormen, Leiserson 和 Riveset所著的
《算法导论》一书为基础,但是有以下两点不同:

(1)header不仅指向root,也指向红黑树的最左节点,以便用常数时间实现begin(),并且也指向红黑树的最右边节点,以便
set相关泛型算法(如set_union等等)可以有线性时间实现。
(2)当一个即将被删除的节点有两个孩子节点时,它的successor(后继)node is relinked into its place, ranther than copied,
如此一来唯一失效的(invalidated)的迭代器就只是那些referring to the deleted node.
*/
#include <stl_algobase.h>
#include <stl_alloc.h>
#include <stl_construct.h>
#include <stl_function.h>

__STL_BEGIN_NAMESPACE
//定义红色黑色。红色为0,黑色为1
typedef bool __rb_tree_color_type;
const __rb_tree_color_type __rb_tree_red = false;
const __rb_tree_color_type __rb_tree_black = true;
//红黑树节点双层结构的Base类
struct __rb_tree_node_base
{
	typedef __rb_tree_color_type color_type;
	typedef __rb_tree_node_base* base_ptr;

	color_type color; 	// 节点颜色,非红即黑
	base_ptr parent;  	// RB树的许多操作,必须知道其父结点
	base_ptr left;	  	// 指向左孩子节点。
	base_ptr right;   	// 指向右孩子节点。

	static base_ptr minimum(base_ptr x)
	{
		while (x->left != 0) x = x->left;	// 一直向左走,就会找到最小值
		return x;				// 这是二叉查找树的性质。
	}

	static base_ptr maximum(base_ptr x)
	{
		while (x->right != 0) x = x->right;// 一直向右走,就会找到最大值
		return x;			// 这是二叉查找树的性质。
	}
};

//红黑树节点双层结构的第二层,继承Base类
template <class Value>
struct __rb_tree_node : public __rb_tree_node_base
{
	typedef __rb_tree_node<Value>* link_type;//指向节点的指针
	Value value_field;	// 节点的值
};
//迭代器基类,类型为bidirectional_iterator_tag,可以双向移动
struct __rb_tree_base_iterator
{
	typedef __rb_tree_node_base::base_ptr base_ptr;//指向红黑树节点指针
	typedef bidirectional_iterator_tag iterator_category;
	typedef ptrdiff_t difference_type;

	//指向红黑树节点的指针,用它来和容器产生关系
	base_ptr node;

	//下面只是为了实现oprerator++的,其他地方不会调用了。
	//++是找到其后继节点
	void increment()
	{
		//如果有右孩子,就是找右子树的最小值
		if (node->right != 0) {		// 如果有右孩子
			node = node->right;		// 就向右走
			while (node->left != 0)	// 然后向左走到底
				node = node->left;
		}
		//如果无右子树。那么就找其最低祖先节点,且这个最低祖先节点的左孩子节点
		//也是其祖先节点(每个节点就是自己的祖先节点)
		else {					// 没有右孩子
			base_ptr y = node->parent;	// 找出父节点
			while (node == y->right) {	// 如果现行节点本身是个右子节点
				node = y;		// 就一直上溯,直到“不为右子节点”止。
				y = y->parent;
			}
			/*
			若此时的右子节点不等于此时的父节点,此时的父节点即为解答,否则此时的node为解答.
			这样做是为了应付一种特殊情况:我们欲寻找根节点的下一个节点。而恰巧根节点无右孩子。
			当然,以上特殊做法必须配合RB-tree根节点与特殊header之间的特殊关系,在上面有图
			*/
			if (node->right != y)		// 若此时的右子节点不等于此时的父节点
				node = y;				// 此时的父节点即为解答
			// 否则此时的node为解答
		}

	}

	//查找前驱结点。
	void decrement()
	{
		if (node->color == __rb_tree_red &&	// 如果是红节点,且
			node->parent->parent == node)	// 父节点的父节点等于自己
			node = node->right;		// 状况(1) 右子节点即为解答。
		/*
		以上情况发生于node为header时(亦即node为end()时)。注意,header之右孩子即
		mostright,指向整棵树的max节点。上面有图
		*/
		//左子树的最大值结点
		else if (node->left != 0) {
			base_ptr y = node->left;
			while (y->right != 0)
				y = y->right;
			node = y;
		}
		/*
		既非根节点,且无左子树。找其最低祖先节点y,且y的右孩子也是其祖先节点
		*/
		else {
			base_ptr y = node->parent;			//找出父节点
			while (node == y->left) {
				node = y;
				y = y->parent;
			}
			node = y;
		}
	}
};
//RB-tree的正规迭代器
template <class Value, class Ref, class Ptr>
struct __rb_tree_iterator : public __rb_tree_base_iterator
{
	typedef Value value_type;
	typedef Ref reference;
	typedef Ptr pointer;
	typedef __rb_tree_iterator<Value, Value&, Value*>     iterator;
	typedef __rb_tree_iterator<Value, const Value&, const Value*> const_iterator;
	typedef __rb_tree_iterator<Value, Ref, Ptr>   self;
	typedef __rb_tree_node<Value>* link_type;

	//几个构造函数
	__rb_tree_iterator() {}
	__rb_tree_iterator(link_type x) { node = x; }
	__rb_tree_iterator(const iterator& it) { node = it.node; }

	//重载操作符
	reference operator*() const { return link_type(node)->value_field; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
	pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */

	//++做了封装,调用的是increment()
	self& operator++() { increment(); return *this; }
	self operator++(int) {
		self tmp = *this;
		increment();
		return tmp;
	}
	//调用的是decrement
	self& operator--() { decrement(); return *this; }
	self operator--(int) {
		self tmp = *this;
		decrement();
		return tmp;
	}
};
//两个迭代器相等,意味着它们指向同一个红黑树节点
inline bool operator==(const __rb_tree_base_iterator& x,
	const __rb_tree_base_iterator& y) {
	return x.node == y.node;
}

inline bool operator!=(const __rb_tree_base_iterator& x,
	const __rb_tree_base_iterator& y) {
	return x.node != y.node;
}

#ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
//返回迭代器类型
inline bidirectional_iterator_tag
iterator_category(const __rb_tree_base_iterator&) {
	return bidirectional_iterator_tag();
}

inline __rb_tree_base_iterator::difference_type*
distance_type(const __rb_tree_base_iterator&) {
	return (__rb_tree_base_iterator::difference_type*) 0;
}

template <class Value, class Ref, class Ptr>
inline Value* value_type(const __rb_tree_iterator<Value, Ref, Ptr>&) {
	return (Value*)0;
}

#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */

// 以下都是全局函数:__rb_tree_rotate_left(), __rb_tree_rotate_right(),
// __rb_tree_rebalance(), __rb_tree_rebalance_for_erase()

/*
新节点必须为红色节点。如果安插处的父节点为红色,就违反了红黑色规则(3)。此时要旋转和改变颜色
*/
//左旋转
inline void
__rb_tree_rotate_left(__rb_tree_node_base* x, __rb_tree_node_base*& root)
{
	// x 为旋转点
	__rb_tree_node_base* y = x->right;	// y为x的右孩子
	x->right = y->left;
	if (y->left != 0)
		y->left->parent = x;		// 别忘了回马枪设定父节点
	y->parent = x->parent;

	// 令 y 完全顶替 x 的地位(必须将x对其父节点的关系完全接收过来)
	if (x == root)					// x 为根节点
		root = y;
	else if (x == x->parent->left)	// x 为父节点的左孩子
		x->parent->left = y;
	else							// x 为父节点的右孩子
		x->parent->right = y;
	y->left = x;
	x->parent = y;
}

//右旋转
inline void
__rb_tree_rotate_right(__rb_tree_node_base* x, __rb_tree_node_base*& root)
{
	// x 为旋转点
	__rb_tree_node_base* y = x->left;	// y为x的左孩子
	x->left = y->right;
	if (y->right != 0)
		y->right->parent = x; 	// 別忘了回马枪设置父节点
	y->parent = x->parent;

	// 令 y 完全顶替 x 的地位(必须将x对其父节点的关系完全接收过来)
	if (x == root)					// x 为根节点
		root = y;
	else if (x == x->parent->right)	// x 为父节点的右孩子
		x->parent->right = y;
	else							// x 为父节点的左孩子
		x->parent->left = y;
	y->right = x;
	x->parent = y;
}


//重新令RB-tree平衡(改变颜色和旋转)参数x为新增节点,参数二为root节点
inline void
__rb_tree_rebalance(__rb_tree_node_base* x, __rb_tree_node_base*& root)
{
	x->color = __rb_tree_red;		// 新节点比为红色
	while (x != root && x->parent->color == __rb_tree_red) { // 父节点为红色
		if (x->parent == x->parent->parent->left) { // 父节点为祖父节点的左孩子
			__rb_tree_node_base* y = x->parent->parent->right;	// 令y 为伯父节点
			if (y && y->color == __rb_tree_red) { 		// 伯父节点存在,且为红色
				x->parent->color = __rb_tree_black;  		// 更改父节点为黑色
				y->color = __rb_tree_black;				// 更改伯父节点为黑色
				x->parent->parent->color = __rb_tree_red; 	// 更改祖父节点为红色
				x = x->parent->parent;
			}
			else {	// 无伯父节点或伯父节点为黑色(NULL就是黑色)
				if (x == x->parent->right) { // 新增节点为父节点的右孩子
					x = x->parent;
					__rb_tree_rotate_left(x, root); // 第一个参数为左旋转点
				}
				x->parent->color = __rb_tree_black;	// 改变颜色,父节点为黑色
				x->parent->parent->color = __rb_tree_red;
				__rb_tree_rotate_right(x->parent->parent, root); // 第一参数为右旋转点
			}
		}
		else {	// 父节点为祖父节点的右孩子
			__rb_tree_node_base* y = x->parent->parent->left; // y为伯父节点
			if (y && y->color == __rb_tree_red) {		// 有伯父节点且为红色
				x->parent->color = __rb_tree_black;		// 更改父节点为黑色
				y->color = __rb_tree_black; 				// 更改伯父节点为黑色
				x->parent->parent->color = __rb_tree_red; 	// 更改祖父节点为红色
				x = x->parent->parent;	// 准备继续往上层检查……
			}
			else {	// 无伯父节点或伯父节点为黑色(NULL就是黑色)
				if (x == x->parent->left) {	// 新节点为父节点的左孩子
					x = x->parent;
					__rb_tree_rotate_right(x, root); 	// 第一个参数右旋转
				}
				x->parent->color = __rb_tree_black;	// 改变颜色,父节点为黑色
				x->parent->parent->color = __rb_tree_red;
				__rb_tree_rotate_left(x->parent->parent, root); // 第一个参数做旋转
			}
		}
	}	// while 結束
	root->color = __rb_tree_black;	// 根节点永远为黑色
}
//删除结点z
inline __rb_tree_node_base*
__rb_tree_rebalance_for_erase(__rb_tree_node_base* z,
__rb_tree_node_base*& root,
__rb_tree_node_base*& leftmost,
__rb_tree_node_base*& rightmost)
{
	__rb_tree_node_base* y = z;
	__rb_tree_node_base* x = 0;
	__rb_tree_node_base* x_parent = 0;
	if (y->left == 0)             // z has at most one non-null child. y == z.
		x = y->right;               // x might be null.
	else
	if (y->right == 0)          // z has exactly one non-null child.  y == z.
		x = y->left;              // x is not null.
	else {                      // z has two non-null children.  Set y to
		y = y->right;             //   z's successor.  x might be null.
		while (y->left != 0)
			y = y->left;
		x = y->right;
	}
	if (y != z) {                 // relink y in place of z.  y is z's successor
		z->left->parent = y;
		y->left = z->left;
		if (y != z->right) {
			x_parent = y->parent;
			if (x) x->parent = y->parent;
			y->parent->left = x;      // y must be a left child
			y->right = z->right;
			z->right->parent = y;
		}
		else
			x_parent = y;
		if (root == z)
			root = y;
		else if (z->parent->left == z)
			z->parent->left = y;
		else
			z->parent->right = y;
		y->parent = z->parent;
		__STD::swap(y->color, z->color);
		y = z;
		// y now points to node to be actually deleted
	}
	else {                        // y == z
		x_parent = y->parent;
		if (x) x->parent = y->parent;
		if (root == z)
			root = x;
		else
		if (z->parent->left == z)
			z->parent->left = x;
		else
			z->parent->right = x;
		if (leftmost == z)
		if (z->right == 0)        // z->left must be null also
			leftmost = z->parent;
		// makes leftmost == header if z == root
		else
			leftmost = __rb_tree_node_base::minimum(x);
		if (rightmost == z)
		if (z->left == 0)         // z->right must be null also
			rightmost = z->parent;
		// makes rightmost == header if z == root
		else                      // x == z->left
			rightmost = __rb_tree_node_base::maximum(x);
	}
	if (y->color != __rb_tree_red) {
		while (x != root && (x == 0 || x->color == __rb_tree_black))
		if (x == x_parent->left) {
			__rb_tree_node_base* w = x_parent->right;
			if (w->color == __rb_tree_red) {
				w->color = __rb_tree_black;
				x_parent->color = __rb_tree_red;
				__rb_tree_rotate_left(x_parent, root);
				w = x_parent->right;
			}
			if ((w->left == 0 || w->left->color == __rb_tree_black) &&
				(w->right == 0 || w->right->color == __rb_tree_black)) {
				w->color = __rb_tree_red;
				x = x_parent;
				x_parent = x_parent->parent;
			}
			else {
				if (w->right == 0 || w->right->color == __rb_tree_black) {
					if (w->left) w->left->color = __rb_tree_black;
					w->color = __rb_tree_red;
					__rb_tree_rotate_right(w, root);
					w = x_parent->right;
				}
				w->color = x_parent->color;
				x_parent->color = __rb_tree_black;
				if (w->right) w->right->color = __rb_tree_black;
				__rb_tree_rotate_left(x_parent, root);
				break;
			}
		}
		else {                  // same as above, with right <-> left.
			__rb_tree_node_base* w = x_parent->left;
			if (w->color == __rb_tree_red) {
				w->color = __rb_tree_black;
				x_parent->color = __rb_tree_red;
				__rb_tree_rotate_right(x_parent, root);
				w = x_parent->left;
			}
			if ((w->right == 0 || w->right->color == __rb_tree_black) &&
				(w->left == 0 || w->left->color == __rb_tree_black)) {
				w->color = __rb_tree_red;
				x = x_parent;
				x_parent = x_parent->parent;
			}
			else {
				if (w->left == 0 || w->left->color == __rb_tree_black) {
					if (w->right) w->right->color = __rb_tree_black;
					w->color = __rb_tree_red;
					__rb_tree_rotate_left(w, root);
					w = x_parent->left;
				}
				w->color = x_parent->color;
				x_parent->color = __rb_tree_black;
				if (w->left) w->left->color = __rb_tree_black;
				__rb_tree_rotate_right(x_parent, root);
				break;
			}
		}
		if (x) x->color = __rb_tree_black;
	}
	return y;
}

template <class Key, class Value, class KeyOfValue, class Compare,
class Alloc = alloc>
class rb_tree {
protected:
	typedef void* void_pointer;
	typedef __rb_tree_node_base* base_ptr;
	typedef __rb_tree_node<Value> rb_tree_node;
	typedef simple_alloc<rb_tree_node, Alloc> rb_tree_node_allocator;
	typedef __rb_tree_color_type color_type;
public:
	//这里没有定义iterator,在后面定义
	typedef Key key_type;
	typedef Value value_type;
	typedef value_type* pointer;
	typedef const value_type* const_pointer;
	typedef value_type& reference;
	typedef const value_type& const_reference;
	typedef rb_tree_node* link_type;
	typedef size_t size_type;
	typedef ptrdiff_t difference_type;
protected:
	link_type get_node() { return rb_tree_node_allocator::allocate(); }
	void put_node(link_type p) { rb_tree_node_allocator::deallocate(p); }

	link_type create_node(const value_type& x) {
		link_type tmp = get_node();			// 配置空间
		__STL_TRY{
			construct(&tmp->value_field, x);	// 构建内容
		}
		__STL_UNWIND(put_node(tmp));
		return tmp;
	}

	link_type clone_node(link_type x) {	// 复制一个节点(值和颜色)
		link_type tmp = create_node(x->value_field);
		tmp->color = x->color;
		tmp->left = 0;
		tmp->right = 0;
		return tmp;
	}

	void destroy_node(link_type p) {
		destroy(&p->value_field);		// 析构内容
		put_node(p);		                // 释放内存
	}

protected:
	// RB-tree 只以三个资料表现
	size_type node_count; // 追踪记录树的大小(节点总数)
	link_type header;
	Compare key_compare;	 // 节点的键值比较判断准则。是个函数 function object。

	//以下三个函数用来方便取得header的成员
	link_type& root() const { return (link_type&)header->parent; }
	link_type& leftmost() const { return (link_type&)header->left; }
	link_type& rightmost() const { return (link_type&)header->right; }

	//以下六个函数用来方便取得节点x的成员。x为函数参数
	static link_type& left(link_type x) { return (link_type&)(x->left); }
	static link_type& right(link_type x) { return (link_type&)(x->right); }
	static link_type& parent(link_type x) { return (link_type&)(x->parent); }
	static reference value(link_type x) { return x->value_field; }
	static const Key& key(link_type x) { return KeyOfValue()(value(x)); }
	static color_type& color(link_type x) { return (color_type&)(x->color); }

	//和上面六个作用相同,注意x参数类型不同。一个是基类指针,一个是派生类指针
	static link_type& left(base_ptr x) { return (link_type&)(x->left); }
	static link_type& right(base_ptr x) { return (link_type&)(x->right); }
	static link_type& parent(base_ptr x) { return (link_type&)(x->parent); }
	static reference value(base_ptr x) { return ((link_type)x)->value_field; }
	static const Key& key(base_ptr x) { return KeyOfValue()(value(link_type(x))); }
	static color_type& color(base_ptr x) { return (color_type&)(link_type(x)->color); }

	//找最大值和最小值。node class 有这个功能函数
	static link_type minimum(link_type x) {
		return (link_type)__rb_tree_node_base::minimum(x);
	}
	static link_type maximum(link_type x) {
		return (link_type)__rb_tree_node_base::maximum(x);
	}

public:
	typedef __rb_tree_iterator<value_type, reference, pointer> iterator;
	typedef __rb_tree_iterator<value_type, const_reference, const_pointer>
		const_iterator;

#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
	typedef reverse_iterator<const_iterator> const_reverse_iterator;
	typedef reverse_iterator<iterator> reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
	typedef reverse_bidirectional_iterator<iterator, value_type, reference,
		difference_type>
		reverse_iterator;
	typedef reverse_bidirectional_iterator<const_iterator, value_type,
		const_reference, difference_type>
		const_reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ 
private:
	iterator __insert(base_ptr x, base_ptr y, const value_type& v);
	link_type __copy(link_type x, link_type p);
	void __erase(link_type x);
	void init() {
		header = get_node();	// 产生一个节点空间,令header指向它
		color(header) = __rb_tree_red; // 令 header 尾红色,用來区 header  
		// 和 root(在 iterator.operator++ 中)
		root() = 0;
		leftmost() = header;	// 令 header 的左孩子为自己。
		rightmost() = header;	// 令 header 的右孩子为自己。
	}
public:
	//默认构造函数                           // allocation/deallocation
	rb_tree(const Compare& comp = Compare())
		: node_count(0), key_compare(comp) {
		init();
	}

	// 以另一个 rb_tree  x 初始化
	rb_tree(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x)
		: node_count(0), key_compare(x.key_compare)
	{
		header = get_node();
		color(header) = __rb_tree_red;
		if (x.root() == 0) {	//  如果 x 空树
			root() = 0;
			leftmost() = header;
			rightmost() = header;
		}
		else {	//  x 不是空树
			__STL_TRY{
			root() = __copy(x.root(), header);		// 拷贝红黑树x 
		}
			__STL_UNWIND(put_node(header));
			leftmost() = minimum(root());	// 令 header 的左孩子为最小节点
			rightmost() = maximum(root());	// 令 header 的右孩子为最大节点
		}
		node_count = x.node_count;
	}
	~rb_tree() {
		clear();
		put_node(header);
	}
	rb_tree<Key, Value, KeyOfValue, Compare, Alloc>&
		operator=(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x);

public:
	// accessors:
	Compare key_comp() const { return key_compare; }
	iterator begin() { return leftmost(); }		// RB 树的起始为最左(最小节点)
	const_iterator begin() const { return leftmost(); }
	iterator end() { return header; }	// RB 树的终节点为header所指处
	const_iterator end() const { return header; }
	reverse_iterator rbegin() { return reverse_iterator(end()); }
	const_reverse_iterator rbegin() const {
		return const_reverse_iterator(end());
	}
	reverse_iterator rend() { return reverse_iterator(begin()); }
	const_reverse_iterator rend() const {
		return const_reverse_iterator(begin());
	}
	bool empty() const { return node_count == 0; }
	size_type size() const { return node_count; }
	size_type max_size() const { return size_type(-1); }

	void swap(rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& t) {

		//RB-tree只有三个资料表现成员,所以两颗RB-tree互换时,只需互换3个成员
		__STD::swap(header, t.header);
		__STD::swap(node_count, t.node_count);
		__STD::swap(key_compare, t.key_compare);
	}

public:
	// insert/erase
	// 将 x 安插到 RB-tree 中(保持节点值独一无二)。
	pair<iterator, bool> insert_unique(const value_type& x);
	// 将 x 安插到 RB-tree 中(允许重复节点)
	iterator insert_equal(const value_type& x);

	iterator insert_unique(iterator position, const value_type& x);
	iterator insert_equal(iterator position, const value_type& x);

#ifdef __STL_MEMBER_TEMPLATES  
	template <class InputIterator>
	void insert_unique(InputIterator first, InputIterator last);
	template <class InputIterator>
	void insert_equal(InputIterator first, InputIterator last);
#else /* __STL_MEMBER_TEMPLATES */
	void insert_unique(const_iterator first, const_iterator last);
	void insert_unique(const value_type* first, const value_type* last);
	void insert_equal(const_iterator first, const_iterator last);
	void insert_equal(const value_type* first, const value_type* last);
#endif /* __STL_MEMBER_TEMPLATES */

	void erase(iterator position);
	size_type erase(const key_type& x);
	void erase(iterator first, iterator last);
	void erase(const key_type* first, const key_type* last);
	void clear() {
		if (node_count != 0) {
			__erase(root());
			leftmost() = header;
			root() = 0;
			rightmost() = header;
			node_count = 0;
		}
	}

public:
	// 集合(set)的各种操作行为
	iterator find(const key_type& x);
	const_iterator find(const key_type& x) const;
	size_type count(const key_type& x) const;
	iterator lower_bound(const key_type& x);
	const_iterator lower_bound(const key_type& x) const;
	iterator upper_bound(const key_type& x);
	const_iterator upper_bound(const key_type& x) const;
	pair<iterator, iterator> equal_range(const key_type& x);
	pair<const_iterator, const_iterator> equal_range(const key_type& x) const;

public:
	// Debugging.
	bool __rb_verify() const;
};

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline bool operator==(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x,
	const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {
	return x.size() == y.size() && equal(x.begin(), x.end(), y.begin());
}
//重载<运算符,使用的是STL泛型算法<span style="font-family: Arial, Helvetica, sans-serif;">lexicographical_compare</span>
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline bool operator<(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x,
	const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {
	return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
}

#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline void swap(rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x,
	rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {
	x.swap(y);
}

#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */

//重载赋值运算符=
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>&
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::
operator=(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x) {
	if (this != &x) {//防止自身赋值
		// Note that Key may be a constant type.
		clear();//先清除
		node_count = 0;
		key_compare = x.key_compare;
		if (x.root() == 0) {
			root() = 0;
			leftmost() = header;
			rightmost() = header;
		}
		else {
			root() = __copy(x.root(), header);
			leftmost() = minimum(root());
			rightmost() = maximum(root());
			node_count = x.node_count;
		}
	}
	return *this;
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::
__insert(base_ptr x_, base_ptr y_, const Value& v) {
	//参数x_为新值安插点,参数y_为安插点之父节点,参数v 为新值
	link_type x = (link_type)x_;
	link_type y = (link_type)y_;
	link_type z;

	//key_compare是键值得比较准则,是个函数或函数指针
	if (y == header || x != 0 || key_compare(KeyOfValue()(v), key(y))) {
		z = create_node(v);  // 产生一个新节点
		left(y) = z;          // 这使得当y为header时,leftmost()=z
		if (y == header) {
			root() = z;
			rightmost() = z;
		}
		else if (y == leftmost())	// 如果y为最左节点
			leftmost() = z;           	// 维护leftmost(),使它永远指向最左节点
	}
	else {
		z = create_node(v);
		right(y) = z;				// 令新节点成为安插点之父节点y的右孩子
		if (y == rightmost())
			rightmost() = z;          	// 维护rightmost(),使它永远指向最右节点
	}
	parent(z) = y;		// 设定新节点的父节点
	left(z) = 0;		// 设定新孩子节点的左孩子
	right(z) = 0; 		// 设定新孩子节点的右孩子
	// 新节点的颜色将在 __rb_tree_rebalance() 设定并调整
	__rb_tree_rebalance(z, header->parent);	// 参数一为新增节点,参数二为root
	++node_count;		// 节点数增加
	return iterator(z);	// 返回迭代器,指向新增节点
}

// 安插新值;允许键值重复。返回新插入节点的迭代器
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::insert_equal(const Value& v)
{
	link_type y = header;
	link_type x = root();
	while (x != 0) {		// 从根节点开始,向下寻找适当安插位置
		y = x;
		x = key_compare(KeyOfValue()(v), key(x)) ? left(x) : right(x);
	}
	return __insert(x, y, v);
}

/*
不允许键值重复,否则安插无效。
返回值是个pair,第一个元素是个RB-tree迭代器,指向新增节点。
第二个元素表示安插是否成功。
*/
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
pair<typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator, bool>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::insert_unique(const Value& v)
{
	link_type y = header;
	link_type x = root();  //从根节点开始
	bool comp = true;
	while (x != 0) { 		// 从根节点开始向下寻找适当安插位置
		y = x;
		comp = key_compare(KeyOfValue()(v), key(x)); // v 键值小于目前节点的键值?
		x = comp ? left(x) : right(x);	// 遇「大」往左,遇「小于或等于」往右
	}
	//离开while循环之后,y所指即为安插点的父节点,x必为叶子节点

	iterator j = iterator(y);   // 令迭代器j指向安插点之父节点 y
	if (comp)	//如果离开while循环时comp为真,表示 父节点键值>v ,将安插在左孩子处
	if (j == begin())   // 如果j是最左节点
		return pair<iterator, bool>(__insert(x, y, v), true);
	// 以上,x 为安插点,y 为安插点之父节点,v 为新值。
	else	// 否则(安插点之父节点不是最左节点)
		--j;	// 调整 j,回头准备测试...
	if (key_compare(key(j.node), KeyOfValue()(v)))
		// 小于新值(表示遇「小」,将安插于右侧)
		return pair<iterator, bool>(__insert(x, y, v), true);

	//若运行到这里,表示键值有重复,不应该插入
	return pair<iterator, bool>(j, false);
}


template <class Key, class Val, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::insert_unique(iterator position,
const Val& v) {
	if (position.node == header->left) // begin()
	if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node)))
		return __insert(position.node, position.node, v);
	// first argument just needs to be non-null 
	else
		return insert_unique(v).first;
	else if (position.node == header) // end()
	if (key_compare(key(rightmost()), KeyOfValue()(v)))
		return __insert(0, rightmost(), v);
	else
		return insert_unique(v).first;
	else {
		iterator before = position;
		--before;
		if (key_compare(key(before.node), KeyOfValue()(v))
			&& key_compare(KeyOfValue()(v), key(position.node)))
		if (right(before.node) == 0)
			return __insert(0, before.node, v);
		else
			return __insert(position.node, position.node, v);
		// first argument just needs to be non-null 
		else
			return insert_unique(v).first;
	}
}

template <class Key, class Val, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::insert_equal(iterator position,
const Val& v) {
	if (position.node == header->left) // begin()
	if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node)))
		return __insert(position.node, position.node, v);
	// first argument just needs to be non-null 
	else
		return insert_equal(v);
	else if (position.node == header) // end()
	if (!key_compare(KeyOfValue()(v), key(rightmost())))
		return __insert(0, rightmost(), v);
	else
		return insert_equal(v);
	else {
		iterator before = position;
		--before;
		if (!key_compare(KeyOfValue()(v), key(before.node))
			&& !key_compare(key(position.node), KeyOfValue()(v)))
		if (right(before.node) == 0)
			return __insert(0, before.node, v);
		else
			return __insert(position.node, position.node, v);
		// first argument just needs to be non-null 
		else
			return insert_equal(v);
	}
}

#ifdef __STL_MEMBER_TEMPLATES  

template <class K, class V, class KoV, class Cmp, class Al> template<class II>
void rb_tree<K, V, KoV, Cmp, Al>::insert_equal(II first, II last) {
	for (; first != last; ++first)
		insert_equal(*first);
}

template <class K, class V, class KoV, class Cmp, class Al> template<class II>
void rb_tree<K, V, KoV, Cmp, Al>::insert_unique(II first, II last) {
	for (; first != last; ++first)
		insert_unique(*first);
}

#else /* __STL_MEMBER_TEMPLATES */

template <class K, class V, class KoV, class Cmp, class Al>
void
rb_tree<K, V, KoV, Cmp, Al>::insert_equal(const V* first, const V* last) {
	for (; first != last; ++first)
		insert_equal(*first);
}

template <class K, class V, class KoV, class Cmp, class Al>
void
rb_tree<K, V, KoV, Cmp, Al>::insert_equal(const_iterator first,
const_iterator last) {
	for (; first != last; ++first)
		insert_equal(*first);
}

template <class K, class V, class KoV, class Cmp, class A>
void
rb_tree<K, V, KoV, Cmp, A>::insert_unique(const V* first, const V* last) {
	for (; first != last; ++first)
		insert_unique(*first);
}

template <class K, class V, class KoV, class Cmp, class A>
void
rb_tree<K, V, KoV, Cmp, A>::insert_unique(const_iterator first,
const_iterator last) {
	for (; first != last; ++first)
		insert_unique(*first);
}

#endif /* __STL_MEMBER_TEMPLATES */

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline void
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(iterator position) {
	link_type y = (link_type)__rb_tree_rebalance_for_erase(position.node,
		header->parent,
		header->left,
		header->right);
	destroy_node(y);
	--node_count;
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::size_type
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(const Key& x) {
	pair<iterator, iterator> p = equal_range(x);
	size_type n = 0;
	distance(p.first, p.second, n);
	erase(p.first, p.second);
	return n;
}
//复制x到p
template <class K, class V, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<K, V, KeyOfValue, Compare, Alloc>::link_type
rb_tree<K, V, KeyOfValue, Compare, Alloc>::__copy(link_type x, link_type p) {
	// structural copy.  x and p must be non-null.
	link_type top = clone_node(x);
	top->parent = p;

	__STL_TRY{
		if (x->right)
		top->right = __copy(right(x), top);
		p = top;
		x = left(x);

		while (x != 0) {
			link_type y = clone_node(x);
			p->left = y;
			y->parent = p;
			if (x->right)
				y->right = __copy(right(x), y);
			p = y;
			x = left(x);
		}
	}
	__STL_UNWIND(__erase(top));

	return top;
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::__erase(link_type x) {
	// erase without rebalancing
	while (x != 0) {
		__erase(right(x));
		link_type y = left(x);
		destroy_node(x);
		x = y;
	}
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(iterator first,
	iterator last) {
	if (first == begin() && last == end())
		clear();
	else
	while (first != last) erase(first++);
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(const Key* first,
	const Key* last) {
	while (first != last) erase(*first++);
}

//查找RB树中是否有键值为k的节点
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const Key& k) {
	link_type y = header;        // Last node which is not less than k. 
	link_type x = root();        // Current node. 

	while (x != 0)
		// key_compare 是 function object。
	if (!key_compare(key(x), k))
		// 运行到这里,表示x键值大于k。遇到大值就向左走。
		y = x, x = left(x);	// 注意语法!逗号表达式
	else
		// 运行到这里,表示x键值小于k。遇到小值就向右走。
		x = right(x);

	iterator j = iterator(y);
	return (j == end() || key_compare(k, key(j.node))) ? end() : j;
}


template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const Key& k) const {
	link_type y = header; /* Last node which is not less than k. */
	link_type x = root(); /* Current node. */

	while (x != 0) {

		if (!key_compare(key(x), k))
			y = x, x = left(x);
		else
			x = right(x);
	}
	const_iterator j = const_iterator(y);
	return (j == end() || key_compare(k, key(j.node))) ? end() : j;
}

//计算RB树中键值为k的节点的个数
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::size_type
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::count(const Key& k) const {
	pair<const_iterator, const_iterator> p = equal_range(k);
	size_type n = 0;
	distance(p.first, p.second, n);
	return n;
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::lower_bound(const Key& k) {
	link_type y = header; /* Last node which is not less than k. */
	link_type x = root(); /* Current node. */

	while (x != 0)
	if (!key_compare(key(x), k))
		y = x, x = left(x);
	else
		x = right(x);

	return iterator(y);
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::lower_bound(const Key& k) const {
	link_type y = header; /* Last node which is not less than k. */
	link_type x = root(); /* Current node. */

	while (x != 0)
	if (!key_compare(key(x), k))
		y = x, x = left(x);
	else
		x = right(x);

	return const_iterator(y);
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::upper_bound(const Key& k) {
	link_type y = header; /* Last node which is greater than k. */
	link_type x = root(); /* Current node. */

	while (x != 0)
	if (key_compare(k, key(x)))
		y = x, x = left(x);
	else
		x = right(x);

	return iterator(y);
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::upper_bound(const Key& k) const {
	link_type y = header; /* Last node which is greater than k. */
	link_type x = root(); /* Current node. */

	while (x != 0)
	if (key_compare(k, key(x)))
		y = x, x = left(x);
	else
		x = right(x);

	return const_iterator(y);
}

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline pair<typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator,
	typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator>
	rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::equal_range(const Key& k) {
		return pair<iterator, iterator>(lower_bound(k), upper_bound(k));
	}

template <class Key, class Value, class KoV, class Compare, class Alloc>
inline pair<typename rb_tree<Key, Value, KoV, Compare, Alloc>::const_iterator,
	typename rb_tree<Key, Value, KoV, Compare, Alloc>::const_iterator>
	rb_tree<Key, Value, KoV, Compare, Alloc>::equal_range(const Key& k) const {
		return pair<const_iterator, const_iterator>(lower_bound(k), upper_bound(k));
	}

//计算从 node 至 root路径中的黑节点数量
inline int __black_count(__rb_tree_node_base* node, __rb_tree_node_base* root)
{
	if (node == 0)
		return 0;
	else {
		int bc = node->color == __rb_tree_black ? 1 : 0;
		if (node == root)
			return bc;
		else
			return bc + __black_count(node->parent, root); // 累加
	}
}

//验证己身这棵树是否符合RB树条件
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
bool
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::__rb_verify() const
{
	// 空树,符合RB树标准
	if (node_count == 0 || begin() == end())
		return node_count == 0 && begin() == end() &&
		header->left == header && header->right == header;

	//最左(叶)节点至 root 路径的黑节点个数
	int len = __black_count(leftmost(), root());
	//一下走访整个RB树,针对每个节点(从最小奥最大)……
	for (const_iterator it = begin(); it != end(); ++it) {
		link_type x = (link_type)it.node; // __rb_tree_base_iterator::node
		link_type L = left(x);		// 这是左子节点
		link_type R = right(x); 	// 这是右子节点

		if (x->color == __rb_tree_red)
		if ((L && L->color == __rb_tree_red) ||
			(R && R->color == __rb_tree_red))
			return false;	// 父子节点同为红色,不合符RB树要求

		if (L && key_compare(key(x), key(L))) // 当前节点的键值小于左孩子节点的键值
			return false;         	// 不符合二叉查找树的要求
		if (R && key_compare(key(R), key(x))) // 当前节点的键值大于右孩子节点的键值
			return false;		// 不符合二叉查找树的要求

		//[叶子结点到root]路径内的黑色节点数,与[最左节点至root]路径内的黑色节点不同。不符合RB树要求
		if (!L && !R && __black_count(x, root()) != len)
			return false;
	}

	if (leftmost() != __rb_tree_node_base::minimum(root()))
		return false;	// 最左节点不为最小节点,不符合二叉查找树的要求。
	if (rightmost() != __rb_tree_node_base::maximum(root()))
		return false;	// 最右节点不为最大节点,不符不符合二叉查找树的要求。

	return true;
}

__STL_END_NAMESPACE

#endif /* __SGI_STL_INTERNAL_TREE_H */

// Local Variables:
// mode:C++
// End:

你可能感兴趣的:(【STL源码剖析读书笔记】【第5章】关联式容器之RB-tree)