Client:客户端进程,负责提交作业到Master。
Master:Standalone模式中主控节点,负责接收Client提交的作业,管理Worker,并命令Worker启动Driver和Executor。
Worker:Standalone模式中slave节点上的守护进程,负责管理本节点的资源,定期向Master汇报心跳,接收Master的命令,启动Driver和Executor。
Driver: 一个Spark作业运行时包括一个Driver进程,也是作业的主进程,负责作业的解析、生成Stage并调度Task到Executor上。包括DAGScheduler,TaskScheduler。
在Spark中的task可以对应于线程,worker是一个个的进程(deamon process),worker由driver来进行管理。
Executor:即真正执行作业的地方,一个集群一般包含多个Executor,每个Executor接收Driver的命令Launch Task,一个Executor可以执行一到多个Task。
job:包含多个task组成的并行计算,往往由action催生,具体表现为,当有Action作用于某RDD时,该action会作为一个job被提交。
Stage:一个Spark作业一般包含一到多个Stage,在DAGScheduler中生成,每个task执行的位置也会在这个过程中申明。
Task:一个Stage包含一到多个Task,通过多个Task实现并行运行的功能。
在提交的过程中,DAGScheduler模块介入运算,计算RDD之间的依赖关系。RDD之间的依赖关系就形成了DAG。每一个JOB被分为多个stage,划分stage的一个主要依据是当前计算因子的输入是否是确定的,如果是则将其分在同一个stage,避免多个stage之间的消息传递开销。当stage被提交之后,由taskscheduler来根据stage来计算所需要的task,并将task提交到对应的worker.
taskSet:一组关联的,相互之间没有shuffle依赖关系的任务组成的任务集。
DAGScheduler: 实现将Spark作业分解成一到多个Stage,每个Stage根据RDD的Partition个数决定Task的个数,然后生成相应的Task set放到TaskScheduler中。
TaskScheduler:实现Task分配到Executor上执行。
Narrow dependency - 窄依赖,子RDD依赖于父RDD中固定的data partition
Wide Dependency - 宽依赖,子RDD对父RDD中的所有data partition都有依赖
Caching Managenment -- 缓存管理,对RDD的中间计算结果进行缓存管理以加快整体的处理速度
Spark应用程序由一个driver program和多个job构成。一个job由多个stage组成。一个stage由多个没有shuffle关系的task组成。
提交作业有两种方式,分别是Driver(作业的master,负责作业的解析、生成stage并调度task到,包含DAGScheduler)运行在Worker上,Driver运行在客户端。接下来分别介绍两种方式的作业运行原理。
应用执行过程分析
spark应用程序进行各种transformation的计算,最后通过action触发job。提交之后,构建SparkContext,通过sparkContext根据RDD的依赖关系构建DAG图,DAG图提交给DAGScheduler进行解析,解析时是以shuffle为边界,反向解析,构建stage,stage之间也有依赖关系,这个过程就是对DAG图进行解析划分stage,并且计算出各个stage之间的依赖关系。stage以stageSet方式提交给TaskScheduler,然后将一个个TaskSet提交给底层调度器,在spark中是提交给taskScheduler处理,生成TaskSet manager,最后提交给executor进行计算,executor多线程计算,完成task任务后,将完成信息提交给schedulerBackend,由它将任务完成的信息提交给TaskScheduler。TaskScheduler反馈信息给TaskSetManager,删除该task任务,执行下一个任务。同时TaskScheduler将完成的结果插入到成功队列里,加入之后返回加入成功的信息。TaskScheduler将任务处理成功的信息传给TaskSet Manager。全部任务完成后TaskSet Manager将结果反馈给DAGScheduler。如果属于resultTask,交给JobListener。如果不属于resultTask,保存结果。全部运行完之后写入数据。
作业执行流程描述:
客户端提交作业给Master
Master让一个Worker启动Driver,即SchedulerBackend。Worker创建一个DriverRunner线程,DriverRunner启动SchedulerBackend进程。
另外Master还会让其余Worker启动Exeuctor,即ExecutorBackend。Worker创建一个ExecutorRunner线程,ExecutorRunner会启动ExecutorBackend进程。
ExecutorBackend启动后会向Driver的SchedulerBackend注册。SchedulerBackend进程中包含DAGScheduler,它会根据用户程序,生成执行计划,并调度执行。对于每个stage的task,都会被存放到TaskScheduler中,ExecutorBackend向SchedulerBackend汇报的时候把TaskScheduler中的task调度到ExecutorBackend执行。
所有stage都完成后作业结束。