hdu 5289 Assignment(2015 Multi-University Training Contest 1)

Assignment

                                                              Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
                                                                                      Total Submission(s): 755    Accepted Submission(s): 373


Problem Description
Tom owns a company and he is the boss. There are n staffs which are numbered from 1 to n in this company, and every staff has a ability. Now, Tom is going to assign a special task to some staffs who were in the same group. In a group, the difference of the ability of any two staff is less than k, and their numbers are continuous. Tom want to know the number of groups like this.
 

Input
In the first line a number T indicates the number of test cases. Then for each case the first line contain 2 numbers n, k (1<=n<=100000, 0<k<=10^9),indicate the company has n persons, k means the maximum difference between abilities of staff in a group is less than k. The second line contains n integers:a[1],a[2],…,a[n](0<=a[i]<=10^9),indicate the i-th staff’s ability.
 

Output
For each test,output the number of groups.
 

Sample Input
   
   
   
   
2 4 2 3 1 2 4 10 5 0 3 4 5 2 1 6 7 8 9
 

Sample Output
   
   
   
   
5 28
Hint
First Sample, the satisfied groups include:[1,1]、[2,2]、[3,3]、[4,4] 、[2,3]
 

Author
FZUACM
 

Source
2015 Multi-University Training Contest 1
 


题目大意:
    
        求一段连续区间的最大值与最小值的差小于k的个数。

解题思路:
       
       这题解题方法很多,线段树,二分+rmq,单调队列,multiset,我们队比赛的时候用multiset过的,后来看题解单

调队列可以过,单调队列还不会,就去网上找了些资料,用单调队列做的。

  单调队列介绍

        单调递减队列是这么一个队列,它的头元素一直是队列当中的最大值,而且队列中的值是按照递减的顺序排列的。我们可以从队列的末尾插入一个元素,可以从队列的两端删除元素。

1.首先看插入元素:为了保证队列的递减性,我们在插入元素v的时候,要将队尾的元素和v比较,如果队尾的元素不大于v,则删除队尾的元素,然后继续将新的队尾的元素与v比较,直到队尾的元素大于v,这个时候我们才将v插入到队尾。

2.队尾的删除刚刚已经说了,那么队首的元素什么时候删除呢?由于我们只需要保存i的前k-1个元素中的最大值,所以当队首的元素的索引或下标小于i-k+1的时候,就说明队首的元素对于求f(i)已经没有意义了,因为它已经不在窗里面了。所以当index[队首元素]<i-k+1时,将队首元素删除。


    于是这题可以用两个单调队列来做,一个维护最大值,一个维护最小值,当不满足条件时,更改在序列前面的那个

最值。



代码(单调队列)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int inf=0x7fffffff;
const int maxn=100000+100;
int l[maxn];
int r[maxn];
struct node
{
    int x;
    int cur;
}a[maxn],b[maxn],p;

int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int n,k;
        scanf("%d%d",&n,&k);
        int cur=1;
        scanf("%d",&a[1].x);
        a[1].cur=b[1].cur=1;
        b[1].x=a[1].x;
        int front1=1,front2=1;
        int cur1=1,cur2=1;
        long long ans=1;
        for(int i=2;i<=n;i++)
        {
            scanf("%d",&p.x);
            p.cur=i;
            for(int j=cur1;j>=front1;j--)//维护最大值
            {
                if(p.x<=a[j].x)
                {
                    a[j+1].x=p.x;
                    a[j+1].cur=p.cur;
                    cur1=j+1;
                    break;
                }
                if(j==front1)
                {
                    a[front1].x=p.x;
                    a[front1].cur=p.cur;
                    cur1=front1;
                    break;
                }
            }
            for(int j=cur2;j>=front2;j--)//维护最小值
            {
                if(p.x>=b[j].x)
                {
                    b[j+1].x=p.x;
                    b[j+1].cur=p.cur;
                    cur2=j+1;
                    break;
                }
                if(j==front2)
                {
                    b[front2].x=p.x;
                    b[front2].cur=p.cur;
                    cur2=front2;
                    break;
                }
            }
            while(a[front1].x-b[front2].x>=k)//不满足条件
            {
                if(a[front1].cur<b[front2].cur)//删除最大值
                {
                    cur=a[front1].cur+1;//区间长度在删除前向后移1位
                    front1++;
                }
                else
                {
                    cur=b[front2].cur+1;
                    front2++;
                }
            }
            ans=ans+(i-cur+1);
        }
        printf("%I64d\n",ans);
    }
    return 0;
}


代码(multiset)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<set>
using namespace std;

int n,k,num[100010];

int main()
{
//    freopen("D:\\in.txt","r",stdin);
    int T,i,j;
    cin>>T;
    while(T--)
    {
        cin>>n>>k;
        multiset<int> ss;
        multiset<int>::iterator it;
        multiset<int>::reverse_iterator itt;
        for(i=0;i<n;i++)
            scanf("%d",&num[i]);
        int st=0,ed=0;
        int mi=num[0],ma=num[0];
        long long ans=0;
        while(st<n)
        {
            while(ed<n)
            {
                if(num[ed]<=ma&&num[ed]>=mi)
                {
                    ss.insert(num[ed++]);
                    continue;
                }
                if(num[ed]<mi)
                {
                    if(ma-num[ed]<k)
                    {
                        mi=num[ed];
                        ss.insert(num[ed++]);
                        continue;
                    }
                    else
                    {
                        ed--;
                        break;
                    }
                }
                if(num[ed]>ma)
                {
                    if(num[ed]-mi<k)
                    {
                        ma=num[ed];
                        ss.insert(num[ed++]);
                        continue;
                    }
                    else
                    {
                        ed--;
                        break;
                    }
                }
            }
            if(ed==n) ed--;
            ans+=ed-st+1;
            it=ss.find(num[st]);
            ss.erase(it);
            if(!ss.empty())
            {
                it=ss.begin();
                mi=*it;
                itt=ss.rbegin();
                ma=*itt;
            }
            else
            {
                mi=ma=num[st+1];
            }
            st++;
            if(st>ed)
                ed=st;
            else
                ed++;
        }
        cout<<ans<<endl;
    }
}



你可能感兴趣的:(Algorithm,编程,算法,ACM)