Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 16654 | Accepted: 7604 |
Description
One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
Input
Output
Sample Input
4 8 2 1 2 4 1 3 2 1 4 7 2 1 1 2 3 5 3 1 2 3 4 4 4 2 3
Sample Output
10
Hint
Source
且通过路i需要花Ti(1≤Ti≤100)的时间。每头母牛必需参加宴会并且在宴会结束时回到自己的田地,但是每头牛都很懒而喜欢选择时间最少的一个方案。来时的路和去时的可能不一样。
找出来回路程最长的。输出来回最长的距离花费的时间
#include<stdio.h> #include<string.h> # define INF 0xfffffff int map[1010][1010]; int dis[1010]; int used[1010],num[1010]; int n,m,x; void dijs(int v) { int i,j,k,min; for(i=1;i<=n;i++)//初始化 { dis[i]=INF; used[i]=0; } dis[v]=0; used[v]=1; for(i=1;i<=n;i++) { min=INF; k=v; for(j=1;j<=n;j++) { if(!used[j]&&min>dis[j]) { k=j; min=dis[j]; } } used[k]=1; for(j=1;j<=n;j++) { if(dis[j]>dis[k]+map[k][j]) dis[j]=dis[k]+map[k][j]; } } } void tran()//转换矩阵 { int temp,i,j; for(i=1;i<=n;i++) for(j=1;j<i;j++) { temp=map[i][j]; map[i][j]=map[j][i]; map[j][i]=temp; } } int main() { int i,j,a,b,c; while(scanf("%d%d%d",&n,&m,&x)!=EOF) { for(i=1;i<=n;i++) for(j=1;j<=n;j++) map[i][j]=INF; for(i=0;i<m;i++) { scanf("%d%d%d",&a,&b,&c); map[a][b]=c; } dijs(x); for(i=1;i<=n;i++) num[i]=dis[i]; tran(); dijs(x); int max=0; for(i=1;i<=n;i++) if(dis[i]+num[i]>max) max=dis[i]+num[i]; printf("%d\n",max); } return 0; }