hdu 4923 Room and Moor (2014 Multi-University Training Contest 6)

 http://acm.hdu.edu.cn/showproblem.php?pid=4923

Room and Moor

Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1105    Accepted Submission(s): 352


Problem Description
PM Room defines a sequence A = {A 1, A 2,..., A N}, each of which is either 0 or 1. In order to beat him, programmer Moor has to construct another sequence B = {B 1, B 2,... , B N} of the same length, which satisfies that:

hdu 4923 Room and Moor (2014 Multi-University Training Contest 6)_第1张图片
 

Input
The input consists of multiple test cases. The number of test cases T(T<=100) occurs in the first line of input.

For each test case:
The first line contains a single integer N (1<=N<=100000), which denotes the length of A and B.
The second line consists of N integers, where the ith denotes A i.
 

Output
Output the minimal f (A, B) when B is optimal and round it to 6 decimals.
 

Sample Input
   
   
   
   
4 9 1 1 1 1 1 0 0 1 1 9 1 1 0 0 1 1 1 1 1 4 0 0 1 1 4 0 1 1 1
 

Sample Output
   
   
   
   
1.428571 1.000000 0.000000 0.000000
 

题解:

       贪心,从后往前找平均值最大的序列,使平均值按递增排列,计算一下方差即可。

代码:


#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn=110000;
int a[maxn];
int main()
{
    int n,t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        for(int i=0;i<n;i++)
        scanf("%d",&a[i]);
        int maxi,coun0,coun,coun1,count0,count1,signn;
        double max,te,ans;
        signn=n-1;
        ans=0.0;
        while(1)
        {
            te=0.0;
            max=0.0;
            maxi=signn;
            coun0=coun1=count1=count0=coun=0;
            for(int i=signn;i>=0;i--)//从未被计算的向前找最大值(也可以向后找最小值)
            {
                coun++;
                if(a[i]==0)
                  {
                    coun0++;
                  }
                   else
                  {
                   coun1++;
                  }
                   te=coun1*1.0/coun;
                    if(te>=max)
                    {
                    max=te;
                    maxi=i;
                    count0=coun0;
                    count1=coun1;
                    }
            }
            ans+=((1.0-max)*(1.0-max)*count1+max*max*count0);//计算找到的这一段的方差
            signn=maxi-1;//标记已被处理过的位置
            if(signn==-1)//当全部被处理
            break;
        }
        printf("%.6f\n",ans);
    }
    return 0;
}


你可能感兴趣的:(Algorithm)