%%%%%%%%%%%%%%%%%%%%%class BaseConvolutionLayer%%%%%%%%%%%%%%%%%%%%%% protected数据成员: /// @brief The spatial dimensions of a filter kernel. Blob<int> kernel_shape_; /// @brief The spatial dimensions of the stride. Blob<int> stride_; /// @brief The spatial dimensions of the padding. Blob<int> pad_; /// @brief The spatial dimensions of the convolution input. Blob<int> conv_input_shape_; /// @brief The spatial dimensions of the col_buffer. vector<int> col_buffer_shape_; /// @brief The spatial dimensions of the output. vector<int> output_shape_; const vector<int>* bottom_shape_; int num_spatial_axes_; int bottom_dim_; int top_dim_; int channel_axis_; int num_; int channels_; int group_; int out_spatial_dim_; int weight_offset_; int num_output_; bool bias_term_; bool is_1x1_; bool force_nd_im2col_; private数据成员: int num_kernels_im2col_; int num_kernels_col2im_; int conv_out_channels_; int conv_in_channels_; int conv_out_spatial_dim_; int kernel_dim_; int col_offset_; int output_offset_; Blob<Dtype> col_buffer_; Blob<Dtype> bias_multiplier_;
template <typename Dtype> void im2col_cpu(const Dtype* data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, Dtype* data_col) { const int height_col = (height + 2 * pad_h - kernel_h) / stride_h + 1; const int width_col = (width + 2 * pad_w - kernel_w) / stride_w + 1; const int channels_col = channels * kernel_h * kernel_w; for (int c_col = 0; c_col < channels_col; ++c_col) { int w_offset = c_col % kernel_w; int h_offset = (c_col / kernel_w) % kernel_h; int c_im = c_col / kernel_h / kernel_w; for (int h_col = 0; h_col < height_col; ++h_col) { for (int w_col = 0; w_col < width_col; ++w_col) { int h_im = h_col * stride_h - pad_h + h_offset; int w_im = w_col * stride_w - pad_w + w_offset; data_col[(c_col * height_col + h_col) * width_col + w_col] = (h_im >= 0 && w_im >= 0 && h_im < height && w_im < width) ? data_im[(c_im * height + h_im) * width + w_im] : 0; } } } } 该函数的功能就是将整张图片按照卷积的窗口大小切成子图(按照stride来切,可以有重叠),最后全部元素拉成一列。为啥要怎样做,因为对于这个小窗口内拉成一列的神经元来说来说,它们跟下一层神经元就是全连接了,所以这个小窗口里面的梯度计算就可以按照全连接来计算就可以了。 可以这么想:将图片的通道数与kernel_h、kernel_w的乘积作为子图的channel,即channels_col。由于卷积窗口在输入上按照stride移动,所以总共有height_col×width_col个子图,而每个子图的通道数为channels_col,所以最终拉成的向量的维度是channels_col×height_col×width_col。而c_im, h_im, w_im则用来计算卷积层输入相应元素的位置信息。 template <typename Dtype> inline void im2col_nd_core_cpu(const Dtype* data_input, const bool im2col, const int num_spatial_axes, const int* im_shape, const int* col_shape, const int* kernel_shape, const int* pad, const int* stride, Dtype* data_output) 该方法是针对输入的spatial dimension 不是二维的情况,但是在一般情况下处理的数据是图像时,其spatial dimension 是二维的,所以这里不细究。 template <typename Dtype> void col2im_cpu(const Dtype* data_col, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, Dtype* data_im) { caffe_set(height * width * channels, Dtype(0), data_im); const int height_col = (height + 2 * pad_h - kernel_h) / stride_h + 1; const int width_col = (width + 2 * pad_w - kernel_w) / stride_w + 1; const int channels_col = channels * kernel_h * kernel_w; for (int c_col = 0; c_col < channels_col; ++c_col) { int w_offset = c_col % kernel_w; int h_offset = (c_col / kernel_w) % kernel_h; int c_im = c_col / kernel_h / kernel_w; for (int h_col = 0; h_col < height_col; ++h_col) { for (int w_col = 0; w_col < width_col; ++w_col) { int h_im = h_col * stride_h - pad_h + h_offset; int w_im = w_col * stride_w - pad_w + w_offset; if (h_im >= 0 && h_im < height && w_im >= 0 && w_im < width) data_im[(c_im * height + h_im) * width + w_im] += data_col[(c_col * height_col + h_col) * width_col + w_col]; } } } } im2col_cpu()的相反过程
在此文件中,有一段关于axis的注释: // The axis to interpret as "channels" when performing convolution. // Preceding dimensions are treated as independent inputs; // succeeding dimensions are treated as "spatial". // With (N, C, H, W) inputs, and axis == 1 (the default), we perform // N independent 2D convolutions, sliding C-channel (or (C/g)-channels, for // groups g>1) filters across the spatial axes (H, W) of the input. // With (N, C, D, H, W) inputs, and axis == 1, we perform // N independent 3D convolutions, sliding (C/g)-channels // filters across the spatial axes (D, H, W) of the input. optional int32 axis = 16 [default = 1];
template <typename Dtype> void BaseConvolutionLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { // Configure the kernel size, padding, stride, and inputs. ConvolutionParameter conv_param = this->layer_param_.convolution_param(); force_nd_im2col_ = conv_param.force_nd_im2col();//im2col,一般情况下num_spatial_axes_==2,即将2维图像拉成向量,但force_nd_im2col_针对的是更general的情况n-d“图像” channel_axis_ = bottom[0]->CanonicalAxisIndex(conv_param.axis()); const int first_spatial_axis = channel_axis_ + 1; const int num_axes = bottom[0]->num_axes(); num_spatial_axes_ = num_axes - first_spatial_axis; CHECK_GE(num_spatial_axes_, 0); vector<int> bottom_dim_blob_shape(1, num_spatial_axes_ + 1); vector<int> spatial_dim_blob_shape(1, std::max(num_spatial_axes_, 1));//当num_spatial_axes_==2时,spatial_dim_blob_shape这个vector只包含一个元素且值为2 // Setup filter kernel dimensions (kernel_shape_). kernel_shape_.Reshape(spatial_dim_blob_shape);//以spatial_dim_blob_shape为参数来构造一个Blob,即kernel_shape_,则这个Blob的维度信息只包含一个维度,值为2,也就是说这个Blob的count_==2。尽管这个Blob的维度信息只包含一个维度,因为在后续的计算(Im2col)中,我只关心这个Blob中的数据的值,而不关心这个Blob的shape信息,例如在Im2col()中,只要取出相应数值即可kernel_shape_.cpu_data()[0], kernel_shape_.cpu_data()[1],pad_.cpu_data()[0], pad_.cpu_data()[1]。 int* kernel_shape_data = kernel_shape_.mutable_cpu_data(); if (conv_param.has_kernel_h() || conv_param.has_kernel_w()) { CHECK_EQ(num_spatial_axes_, 2) << "kernel_h & kernel_w can only be used for 2D convolution."; CHECK_EQ(0, conv_param.kernel_size_size()) << "Either kernel_size or kernel_h/w should be specified; not both."; kernel_shape_data[0] = conv_param.kernel_h();//kernel_shape_data是一个二维数组 kernel_shape_data[1] = conv_param.kernel_w(); } else { const int num_kernel_dims = conv_param.kernel_size_size(); CHECK(num_kernel_dims == 1 || num_kernel_dims == num_spatial_axes_) << "kernel_size must be specified once, or once per spatial dimension " << "(kernel_size specified " << num_kernel_dims << " times; " << num_spatial_axes_ << " spatial dims);"; for (int i = 0; i < num_spatial_axes_; ++i) { kernel_shape_data[i] = conv_param.kernel_size((num_kernel_dims == 1) ? 0 : i); } } for (int i = 0; i < num_spatial_axes_; ++i) { CHECK_GT(kernel_shape_data[i], 0) << "Filter dimensions must be nonzero."; } // Setup stride dimensions (stride_). stride_.Reshape(spatial_dim_blob_shape); int* stride_data = stride_.mutable_cpu_data(); if (conv_param.has_stride_h() || conv_param.has_stride_w()) { CHECK_EQ(num_spatial_axes_, 2) << "stride_h & stride_w can only be used for 2D convolution."; CHECK_EQ(0, conv_param.stride_size()) << "Either stride or stride_h/w should be specified; not both."; stride_data[0] = conv_param.stride_h(); stride_data[1] = conv_param.stride_w(); } else { const int num_stride_dims = conv_param.stride_size(); CHECK(num_stride_dims == 0 || num_stride_dims == 1 || num_stride_dims == num_spatial_axes_) << "stride must be specified once, or once per spatial dimension " << "(stride specified " << num_stride_dims << " times; " << num_spatial_axes_ << " spatial dims);"; const int kDefaultStride = 1; for (int i = 0; i < num_spatial_axes_; ++i) { stride_data[i] = (num_stride_dims == 0) ? kDefaultStride : conv_param.stride((num_stride_dims == 1) ? 0 : i); CHECK_GT(stride_data[i], 0) << "Stride dimensions must be nonzero."; } } // Setup pad dimensions (pad_). pad_.Reshape(spatial_dim_blob_shape); int* pad_data = pad_.mutable_cpu_data(); if (conv_param.has_pad_h() || conv_param.has_pad_w()) { CHECK_EQ(num_spatial_axes_, 2) << "pad_h & pad_w can only be used for 2D convolution."; CHECK_EQ(0, conv_param.pad_size()) << "Either pad or pad_h/w should be specified; not both."; pad_data[0] = conv_param.pad_h(); pad_data[1] = conv_param.pad_w(); } else { const int num_pad_dims = conv_param.pad_size(); CHECK(num_pad_dims == 0 || num_pad_dims == 1 || num_pad_dims == num_spatial_axes_) << "pad must be specified once, or once per spatial dimension " << "(pad specified " << num_pad_dims << " times; " << num_spatial_axes_ << " spatial dims);"; const int kDefaultPad = 0; for (int i = 0; i < num_spatial_axes_; ++i) { pad_data[i] = (num_pad_dims == 0) ? kDefaultPad : conv_param.pad((num_pad_dims == 1) ? 0 : i); } } // Special case: im2col is the identity for 1x1 convolution with stride 1 // and no padding, so flag for skipping the buffer and transformation. is_1x1_ = true; for (int i = 0; i < num_spatial_axes_; ++i) { is_1x1_ &= kernel_shape_data[i] == 1 && stride_data[i] == 1 && pad_data[i] == 0; if (!is_1x1_) { break; } } // Configure output channels and groups. channels_ = bottom[0]->shape(channel_axis_); num_output_ = this->layer_param_.convolution_param().num_output(); CHECK_GT(num_output_, 0); group_ = this->layer_param_.convolution_param().group(); CHECK_EQ(channels_ % group_, 0); CHECK_EQ(num_output_ % group_, 0) << "Number of output should be multiples of group."; if (reverse_dimensions()) { conv_out_channels_ = channels_; conv_in_channels_ = num_output_; } else { conv_out_channels_ = num_output_; conv_in_channels_ = channels_; } // Handle the parameters: weights and biases. // - blobs_[0] holds the filter weights // - blobs_[1] holds the biases (optional) vector<int> weight_shape(2); weight_shape[0] = conv_out_channels_; weight_shape[1] = conv_in_channels_ / group_; for (int i = 0; i < num_spatial_axes_; ++i) { weight_shape.push_back(kernel_shape_data[i]); } bias_term_ = this->layer_param_.convolution_param().bias_term(); vector<int> bias_shape(bias_term_, num_output_); if (this->blobs_.size() > 0) { CHECK_EQ(1 + bias_term_, this->blobs_.size()) << "Incorrect number of weight blobs."; if (weight_shape != this->blobs_[0]->shape()) { Blob<Dtype> weight_shaped_blob(weight_shape); LOG(FATAL) << "Incorrect weight shape: expected shape " << weight_shaped_blob.shape_string() << "; instead, shape was " << this->blobs_[0]->shape_string(); } if (bias_term_ && bias_shape != this->blobs_[1]->shape()) { Blob<Dtype> bias_shaped_blob(bias_shape); LOG(FATAL) << "Incorrect bias shape: expected shape " << bias_shaped_blob.shape_string() << "; instead, shape was " << this->blobs_[1]->shape_string(); } LOG(INFO) << "Skipping parameter initialization"; } else { if (bias_term_) { this->blobs_.resize(2); } else { this->blobs_.resize(1); } // Initialize and fill the weights: // output channels x input channels per-group x kernel height x kernel width this->blobs_[0].reset(new Blob<Dtype>(weight_shape));//blobs_[0]的维度信息是四个维度,count_为四个维度的值相乘 shared_ptr<Filler<Dtype> > weight_filler(GetFiller<Dtype>( this->layer_param_.convolution_param().weight_filler())); weight_filler->Fill(this->blobs_[0].get()); // If necessary, initialize and fill the biases. if (bias_term_) { this->blobs_[1].reset(new Blob<Dtype>(bias_shape));//blobs_[1]的维度信息是1个维度,count_为num_output_ shared_ptr<Filler<Dtype> > bias_filler(GetFiller<Dtype>( this->layer_param_.convolution_param().bias_filler())); bias_filler->Fill(this->blobs_[1].get()); } } kernel_dim_ = this->blobs_[0]->count(1);//是一个三维维度的乘积 weight_offset_ = conv_out_channels_ * kernel_dim_ / group_;//写成(conv_out_channels_ / group_) * kernel_dim_更直观。这个offset是相对group分组来讲的。 // Propagate gradients to the parameters (as directed by backward pass). this->param_propagate_down_.resize(this->blobs_.size(), true); }
template <typename Dtype> void BaseConvolutionLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { const int first_spatial_axis = channel_axis_ + 1; CHECK_EQ(bottom[0]->num_axes(), first_spatial_axis + num_spatial_axes_) << "bottom num_axes may not change."; num_ = bottom[0]->count(0, channel_axis_); CHECK_EQ(bottom[0]->shape(channel_axis_), channels_) << "Input size incompatible with convolution kernel."; // TODO: generalize to handle inputs of different shapes.所有的输入bottom都必须有相同的shape for (int bottom_id = 1; bottom_id < bottom.size(); ++bottom_id) { CHECK(bottom[0]->shape() == bottom[bottom_id]->shape()) << "All inputs must have the same shape."; } // Shape the tops.卷积层应该默认有多少个bottom 就有多少个top输出 bottom_shape_ = &bottom[0]->shape(); compute_output_shape(); vector<int> top_shape(bottom[0]->shape().begin(), bottom[0]->shape().begin() + channel_axis_); top_shape.push_back(num_output_); for (int i = 0; i < num_spatial_axes_; ++i) { top_shape.push_back(output_shape_[i]); } for (int top_id = 0; top_id < top.size(); ++top_id) { top[top_id]->Reshape(top_shape); } if (reverse_dimensions()) { conv_out_spatial_dim_ = bottom[0]->count(first_spatial_axis); } else { conv_out_spatial_dim_ = top[0]->count(first_spatial_axis); } //group分,对conv_in_channels分组; 卷积窗口在输入“图像”上按步长滑动,(可以想象)形成了多个子图;然后将所有子图拉成一列,列的长度就是col_offset_。 col_offset_ = kernel_dim_ * conv_out_spatial_dim_;//col_offset_与im2col_cpu()函数中channels_col的计算是相似的,但是值并不相等,原因在于:channels_col是将卷积层输入的通道数conv_in_channels_用于相乘,但kernel_dim_只用到了一部分channel,即conv_in_channels_/group_ 。 output_offset_ = conv_out_channels_ * conv_out_spatial_dim_ / group_;//卷积层的输出特征图也要分组,当然group_默认为1。写成(conv_out_channels_ / group_) * conv_out_spatial_dim_更直观 // Setup input dimensions (conv_input_shape_). vector<int> bottom_dim_blob_shape(1, num_spatial_axes_ + 1); conv_input_shape_.Reshape(bottom_dim_blob_shape);//与pad_、 stride_类似 int* conv_input_shape_data = conv_input_shape_.mutable_cpu_data(); for (int i = 0; i < num_spatial_axes_ + 1; ++i) { if (reverse_dimensions()) { conv_input_shape_data[i] = top[0]->shape(channel_axis_ + i); } else { conv_input_shape_data[i] = bottom[0]->shape(channel_axis_ + i); } } // The im2col result buffer will only hold one image at a time to avoid // overly large memory usage. In the special case of 1x1 convolution // it goes lazily unused to save memory. col_buffer_shape_.clear();//col_buffer_shape_是一个vector col_buffer_shape_.push_back(kernel_dim_ * group_);//所有conv_in_channels_个输入的channels都包含其中。 for (int i = 0; i < num_spatial_axes_; ++i) { if (reverse_dimensions()) { col_buffer_shape_.push_back(input_shape(i + 1)); } else { col_buffer_shape_.push_back(output_shape_[i]); } } col_buffer_.Reshape(col_buffer_shape_);//一般情况下,col_buffer_的维度信息为三个维度。col_buffer_shape_的存储的元素为:kernel_dim_ * group_, 输出特征图的H, 输出特征图的W。可以认为col_buffer_内所存储的数据的维度为:(kernel_dim_ * group_) × H × W,且与kernel_dim_ x conv_out_spatial_dim_有密切关系. bottom_dim_ = bottom[0]->count(channel_axis_); top_dim_ = top[0]->count(channel_axis_); num_kernels_im2col_ = conv_in_channels_ * conv_out_spatial_dim_; num_kernels_col2im_ = reverse_dimensions() ? top_dim_ : bottom_dim_; // Set up the all ones "bias multiplier" for adding biases by BLAS out_spatial_dim_ = top[0]->count(first_spatial_axis);//out_spatial_dim_ == conv_out_spatial_dim_ if (bias_term_) { vector<int> bias_multiplier_shape(1, out_spatial_dim_); bias_multiplier_.Reshape(bias_multiplier_shape);//bias_multiplier_这个Blob的count_为out_spatial_dim_,是输出特征图的H×W caffe_set(bias_multiplier_.count(), Dtype(1), bias_multiplier_.mutable_cpu_data()); } } //////////////////////注意: col_offset_ output_offset_ weight_offet 都是因为group_分组而存在的\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
template <typename Dtype> void BaseConvolutionLayer<Dtype>::forward_cpu_gemm(const Dtype* input, const Dtype* weights, Dtype* output, bool skip_im2col) { const Dtype* col_buff = input; if (!is_1x1_) { if (!skip_im2col) { conv_im2col_cpu(input, col_buffer_.mutable_cpu_data()); } col_buff = col_buffer_.cpu_data(); } for (int g = 0; g < group_; ++g) { caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, conv_out_channels_ / group_, conv_out_spatial_dim_, kernel_dim_, (Dtype)1., weights + weight_offset_ * g, col_buff + col_offset_ * g, (Dtype)0., output + output_offset_ * g);//weights <--- blobs_[0]->cpu_data()。类比全连接层,weights为权重,col_buff相当与数据,矩阵相乘weights×col_buff. 其中,weights的维度为(conv_out_channels_ /group_) x kernel_dim_, col_buff的维度为kernel_dim_ x conv_out_spatial_dim_, output的维度为(conv_out_channels_ /group_) x conv_out_spatial_dim_. } }//只是对一张图像进行前向传播!与全连接层类比,conv_out_channels_ / group_相当与全连接层的输出神经元个数;conv_out_spatial_dim_相当于全连接层中的样本个数;kernel_dim_相当与全连接层中每个样本特征向量的维数。
template <typename Dtype> void BaseConvolutionLayer<Dtype>::forward_cpu_bias(Dtype* output, const Dtype* bias) { caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num_output_, out_spatial_dim_, 1, (Dtype)1., bias, bias_multiplier_.cpu_data(), (Dtype)1., output); }//卷积后加bias
template <typename Dtype> void BaseConvolutionLayer<Dtype>::backward_cpu_gemm(const Dtype* output, const Dtype* weights, Dtype* input) { Dtype* col_buff = col_buffer_.mutable_cpu_data(); if (is_1x1_) { col_buff = input; } for (int g = 0; g < group_; ++g) { caffe_cpu_gemm<Dtype>(CblasTrans, CblasNoTrans, kernel_dim_, conv_out_spatial_dim_, conv_out_channels_ / group_, (Dtype)1., weights + weight_offset_ * g, output + output_offset_ * g, (Dtype)0., col_buff + col_offset_ * g); } if (!is_1x1_) { conv_col2im_cpu(col_buff, input); } }//计算关于bottom data的导数以便传给下一层
template <typename Dtype> void BaseConvolutionLayer<Dtype>::weight_cpu_gemm(const Dtype* input, const Dtype* output, Dtype* weights) { const Dtype* col_buff = input; if (!is_1x1_) { conv_im2col_cpu(input, col_buffer_.mutable_cpu_data()); col_buff = col_buffer_.cpu_data(); } for (int g = 0; g < group_; ++g) { caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasTrans, conv_out_channels_ / group_, kernel_dim_, conv_out_spatial_dim_, (Dtype)1., output + output_offset_ * g, col_buff + col_offset_ * g, (Dtype)1., weights + weight_offset_ * g); } }//计算关于weight的导数用于更新。
template <typename Dtype> void BaseConvolutionLayer<Dtype>::backward_cpu_bias(Dtype* bias, const Dtype* input) { caffe_cpu_gemv<Dtype>(CblasNoTrans, num_output_, out_spatial_dim_, 1., input, bias_multiplier_.cpu_data(), 1., bias); }//计算关于bias的导数
template <typename Dtype> void ConvolutionLayer<Dtype>::compute_output_shape() { const int* kernel_shape_data = this->kernel_shape_.cpu_data(); const int* stride_data = this->stride_.cpu_data(); const int* pad_data = this->pad_.cpu_data(); this->output_shape_.clear(); for (int i = 0; i < this->num_spatial_axes_; ++i) { // i + 1 to skip channel axis const int input_dim = this->input_shape(i + 1); const int output_dim = (input_dim + 2 * pad_data[i] - kernel_shape_data[i]) / stride_data[i] + 1; this->output_shape_.push_back(output_dim); } }//计算输出feature map 的shape
template <typename Dtype> void ConvolutionLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { const Dtype* weight = this->blobs_[0]->cpu_data(); for (int i = 0; i < bottom.size(); ++i) { const Dtype* bottom_data = bottom[i]->cpu_data();//卷积层应该默认有多少个bottom 就有多少个top输出 Dtype* top_data = top[i]->mutable_cpu_data(); for (int n = 0; n < this->num_; ++n) { this->forward_cpu_gemm(bottom_data + n * this->bottom_dim_, weight, top_data + n * this->top_dim_);//说明是一张图像一张图像地进行前向传播,因为:1.num_ 2.top_dim的值等于top blob中一张图像拉成一列的列长。 if (this->bias_term_) { const Dtype* bias = this->blobs_[1]->cpu_data(); this->forward_cpu_bias(top_data + n * this->top_dim_, bias); } } } }//卷积层的Forward_cpu方法。
template <typename Dtype> void ConvolutionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { const Dtype* weight = this->blobs_[0]->cpu_data(); Dtype* weight_diff = this->blobs_[0]->mutable_cpu_diff(); for (int i = 0; i < top.size(); ++i) { const Dtype* top_diff = top[i]->cpu_diff(); const Dtype* bottom_data = bottom[i]->cpu_data(); Dtype* bottom_diff = bottom[i]->mutable_cpu_diff(); // Bias gradient, if necessary. if (this->bias_term_ && this->param_propagate_down_[1]) { Dtype* bias_diff = this->blobs_[1]->mutable_cpu_diff(); for (int n = 0; n < this->num_; ++n) { this->backward_cpu_bias(bias_diff, top_diff + n * this->top_dim_); } } if (this->param_propagate_down_[0] || propagate_down[i]) { for (int n = 0; n < this->num_; ++n) { // gradient w.r.t. weight. Note that we will accumulate diffs. if (this->param_propagate_down_[0]) { this->weight_cpu_gemm(bottom_data + n * this->bottom_dim_, top_diff + n * this->top_dim_, weight_diff); } // gradient w.r.t. bottom data, if necessary. if (propagate_down[i]) { this->backward_cpu_gemm(top_diff + n * this->top_dim_, weight, bottom_diff + n * this->bottom_dim_); } } } } }//卷积层的Backward_cpu。