Spark 1.5.x的新特性
1、DataFrame底层执行的性能优化(钨丝计划第一阶段)
1.1 Spark自己来管理内存,而不再依靠JVM管理内容。这样就可以避免JVM GC的性能开销,并且能够控制OOM的问题。
1.2 Java对象直接使用内部的二进制格式存储和计算,省去了序列化和反序列化的性能开销,而且更加节省内存开销。
1.3 完善了Shuffle阶段的UnsafeShuffleManager,增加了不少新功能,优化shuffle性能。
1.4 默认使用code-gen,使用cache-aware算法,加强了join、aggregation、shuffle、sorting的性能,增强了window function的性能,性能比1.4.x版本提高数倍
2、DataFrame
2.1 实现了新的聚合函数接口,AggregateFunction2,并且提供了7个新的内置聚合函数。
2.2 实现了100多个新的expression function,例如unix_timestamp等,增强了对NaN的处理
2.3 支持连接不同版本的hive metastore
2.4 支持Parquet 1.7
3、Spark Streaming:更完善的python支持、非实验的Kafka Direct API等等。
Spark 1.6.x的新特性
Spark-1.6是Spark-2.0之前的最后一个版本。主要是三个大方面的改进:性能提升,新的 Dataset API 和数据科学功能的扩展。这是社区开发非常重要的一个里程碑。
1. 性能提升
根据 Apache Spark 官方 2015 年 Spark Survey,有 91% 的用户想要提升 Spark 的性能。
Parquet 性能
自动化内存管理
流状态管理速度提升 10X
2. Dataset API
Spark 团队引入了 DataFrames,新型Dataset API。
3. 新的科学计算功能
机器学习管道持久性
新的算法和功能:
univariate and bivariate statistics
survival analysis
normal equation for least squares
bisecting K-Means clustering
online hypothesis testing
Latent Dirichlet Allocation (LDA) in ML Pipelines
R-like statistics for GLMs
feature interactions in R formula
instance weights for GLMs
univariate and bivariate statistics in DataFrames
LIBSVM data source
non-standard JSON data