slab_--2 创建 销毁 cache

  创建新的缓存必须通过kmem_cache_create()函数来完成,流程如下:

1,从全局cache_cache中获得cache结构,因为全局cache_cache初始化对象的大小就是kmem_cache结构的大小,所以返回的指针正好可以转换为cache结构;调用 kmem_cache_zalloc(&cache_cache, gfp);

2,获得slab中碎片大小,由函数calculate_slab_order()实现;

3,计算并初始化cache的各种属性,如果是外置式,需要用kmem_find_general_cachep(slab_size, 0u)指定cachep->slabp_cache,用于存放slab对象和kmem_bufctl_t[]数组;

4,设置每个CPU上得本地cachesetup_cpu_cache();

5cache创建完毕,将其加入到全局slab cache链表中;

struct kmem_cache *
kmem_cache_create (const char *name, size_t size, size_t align,
	unsigned long flags, void (*ctor)(void *))

  • name:所创建的新缓存的名字
  • size :缓存所分配对象的大小
  • align:对象的对齐值
  • flags:创建用的标识
  • ctor:创建对象时的构造函数

struct kmem_cache *
__kmem_cache_create (const char *name, size_t size, size_t align,
	unsigned long flags, void (*ctor)(void *))
{
	size_t left_over, slab_size, ralign;
	struct kmem_cache *cachep = NULL;
	gfp_t gfp;

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
	 */
	BUG_ON(flags & ~CREATE_MASK);

	/*
	 * Check that size is in terms of words.  This is needed to avoid
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
	}

	/* calculate the final buffer alignment: */

	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
		 */
		ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}

	/*
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}

	/* 2) arch mandated alignment */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
	/* 3) caller mandated alignment */
	if (ralign < align) {
		ralign = align;
	}
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
	/*
	 * 4) Store it.
	 */
	align = ralign;

	if (slab_is_available()) /* slab分配器是否已经可用 */  
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

	/* Get cache's description obj. */
<span style="white-space:pre">		  /* 获得struct kmem_cache对象 ,为什么能从cache中获得的对象是 
    kmem_cache结构呢,因为这里的全局变量cache_cache的对象大小 
    就是kmem_cache结构大小*/  </span>
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
	if (!cachep)
		return NULL;

	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
	cachep->object_size = size;
	cachep->align = align;
#if DEBUG

	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
	}
	if (flags & SLAB_STORE_USER) {
		/* user store requires one word storage behind the end of
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
		 */
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
	    && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
		size = PAGE_SIZE;
	}
#endif
#endif

	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
	 *//* 确定slab管理对象的存储方式:内置还是外置 
     。通常,当对象大于等于512时,使用外置方式 
     。初始化阶段采用内置式。 

	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

	left_over = calculate_slab_order(cachep, size, align, flags);/* 获得slab中碎片的大小 */  

	if (!cachep->num) {  /* cachep->num为该cache中每个slab的对象数,为0,表示为该对象创建cache失败 */  
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		return NULL;
	}
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 *//* 如果这是一个外置式slab,并且碎片大小大于slab管理对象的大小 
    <span style="white-space:pre">					</span>,则可将slab管理对象移到slab中,改造成一个内置式slab */  
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}
<span style="white-space:pre">		  /* align是针对slab对象的,如果slab管理对象是外置存储 
        ,自然不会像内置那样影响到后面slab对象的存储位置 
        ,也就不需要对齐了 */  </span>
	if (flags & CFLGS_OFF_SLAB) {  
		/* really off slab. No need for manual alignment */
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
	}

	cachep->colour_off = cache_line_size();  /* cache的着色块的单位大小 */  
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align; /* 着色块大小必须是对象要求对齐方式的倍数 */  
	cachep->colour = left_over / cachep->colour_off; /* 计算碎片区需要多少个着色快 */  
	cachep->slab_size = slab_size;  /* slab管理对象的大小 */  
	cachep->flags = flags;
	cachep->allocflags = 0;
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
		cachep->allocflags |= GFP_DMA;
	cachep->size = size;/* slab对象的大小 */  
	cachep->reciprocal_buffer_size = reciprocal_value(size);

	if (flags & CFLGS_OFF_SLAB) {  /* 分配一个slab管理区域对象,保存在slabp_cache中, 
        这个函数传入的大小为slab_size,也就是分配slab_size大小的cache 
        ,在slab创建的时候如果是外置式,那么需要从分配的这里面 
        分配出slab对象,剩下的空间放kmem_bufctl_t[]数组, 
        如果是内置式的slab,此指针为空 */  
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
	}
	cachep->ctor = ctor;
	cachep->name = name;

	if (setup_cpu_cache(cachep, gfp)) {  /* 设置每个cpu上的local cache */  
		__kmem_cache_destroy(cachep);
		return NULL;
	}

	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
	}

	/* cache setup completed, link it into the list */
	list_add(&cachep->list, &slab_caches);  /* cache创建完毕,将其加入到全局slab cache链表中 */  
	return cachep
}
static struct kmem_cache cache_cache = {
.nodelists = cache_cache_nodelists,
.batchcount = 1,
.limit = BOOT_CPUCACHE_ENTRIES,
.shared = 1,
.size = sizeof(struct kmem_cache),
.name = "kmem_cache",
};
/**
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
 /*计算slab由几个页面组成,同时计算每个slab中有多少对象*/
static size_t calculate_slab_order(struct kmem_cache *cachep,
			size_t size, size_t align, unsigned long flags)
{
	unsigned long offslab_limit;
	size_t left_over = 0;
	int gfporder;

	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
		unsigned int num;
		size_t remainder;
		/* 计算slab中对象数 */
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
		/* 对象数为0,表示此order下,一个对象都放不下,检查下一order */
		if (!num)
			continue;

		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			 /* 创建一个外置式slab时,要相应分配该slab的管理对象
			 ,包含struct slab对象和kmem_bufctl_t数组,分配管理对象的流程就是分配普通对象的流程
			 ,再来看一下分配对象的流程:
			kmem_cache_alloc->__cache_alloc-> __do_cache_alloc-> ____cache_alloc-> cache_alloc_refill-> cache_grow-> alloc_slabmgmt-> kmem_cache_alloc_node-> kmem_cache_alloc
			可以看出这里可能存在一个循环,循环的关键在于alloc_slabmgmt函数
			,当slab管理对象是off-slab方式时,就形成了循环
			。那么什么时候slab管理对象会采用外置式slab呢?显然当其管理的slab中对象很多
			,从而kmem_bufctl_t数组很大,致使整个管理对象也很大,此时才会形成循环
			。故需要对kmem_bufctl_t的数目做限制,下面的算法是很粗略的,既然对象大小为size时
			,是外置式slab,那么我们假设管理对象的大小也是size,计算出kmem_bufctl_t数组的大小
			,即此大小的kmem_bufctl_t数组一定会造成管理对象是外置式slab。之所以说粗略
			,是指数组大小小于这个限制时,也不能确保管理对象一定是内置式slab。但这也不会引发错误
			,因为还有一个slab_break_gfp_order阀门来控制每个slab所占页面数,通常其值为1,即每个slab最多两个页面
			,外置式slab存放的都是大于512的大对象,所以
			slab中不会有太多的大对象,kmem_bufctl_t数组也不会很大,粗略判断一下就足够了。
			*/
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);
			/* 对象数目大于限制,跳出循环,不再尝试更大的order
			,避免slab中对象数目过多
			,此时计算的对象数也是有效的,循环一次没什么 */
 			if (num > offslab_limit)
				break;
		}

		/* Found something acceptable - save it away */
		/* 每个slab中的对象数 */
		cachep->num = num;
		 /* slab的order,即由几个页面组成 */
		cachep->gfporder = gfporder;
		 /* slab中剩余空间(碎片)的大小 */
		left_over = remainder;

		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		 /* SLAB_RECLAIM_ACCOUNT表示此slab所占页面为可回收的
		 ,当内核检测是否有足够的页面满足用户态的需求时
		 ,此类页面将被计算在内,通过调用
		 kmem_freepages()函数可以释放分配给slab的页框。由于是可回收的
		 ,所以不需要做后面的碎片检测了 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
		 /* slab_break_gfp_order为slab所占页面的阀门,超过这个阀门时
		 ,无论碎片大小,都不再检测更高的order了 */
		if (gfporder >= slab_break_gfp_order)
			break;

		/*
		 * Acceptable internal fragmentation?
		 */
		 /* slab所占页面的大小是碎片大小的8倍以上
		 ,页面利用率较高,可以接受这样的order */
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
			break;
	}
	/* 返回碎片大小 */
	return left_over;
设置cpu的cache

/*配置local cache和slab三链。*/
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
{
	/* general cache初始化完毕,配置每个cpu的local cache */
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep, gfp);
	/* 此时处于系统初始化阶段,g_cpucache_up记录general cache初始化的进度
	,比如PARTIAL_AC表示struct array_cache所在的cache已经创建,
	PARTIAL_L3表示struct kmem_list3所在的cache已经创建
	,注意创建这两个cache的先后顺序
	。在初始化阶段只需配置主cpu的local cache和slab三链 */
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		 /* 初始化阶段创建struct array_cache所在cache时进入这个流程
		 ,此时struct array_cache所在的general cache还未创建
		 ,只能使用静态分配的全局变量initarray_generic表示的local cache */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		 /* 创建struct kmem_list3所在的cache是在struct array_cache所在cache之后
		 ,所以此时struct kmem_list3所在的
		 cache也一定没有创建,也需要使用全局变量 */
		set_up_list3s(cachep, SIZE_AC);
		/* 执行到这struct array_cache所在的cache创建完毕
		,如果struct kmem_list3和struct array_cache位于同一个general cache中
		,不会再重复创建了
		,g_cpucache_up表示的进度更进一步 */
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		/* g_cpucache_up至少为PARTIAL_AC时进入这个流程,struct array_cache所在的
		general cache已经建立起来,可以通过kmalloc分配了 */
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), gfp);

		if (g_cpucache_up == PARTIAL_AC) {
			/* struct kmem_list3所在cache仍未创建完毕,还需使用全局的slab三链 */
			set_up_list3s(cachep, SIZE_L3);
			/* 后面将会分析kmem_cache_init函数,只有创建struct kmem_list3所在
			cache时才会进入此流程,上面的代码执行完,struct kmem_list3所在
			cache也就创建完毕可以使用了,更新g_cpucache_up */
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =/* 通过kmalloc分配struct kmem_list3对象 */
				    kmalloc_node(sizeof(struct kmem_list3),
						gfp, node);
				BUG_ON(!cachep->nodelists[node]);
				/* 初始化slab三链 */
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	/* 设置回收时间 */
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
	return 0;
}

  • 计算对齐值
  • 分配一个缓存描述符
  • 确定slab管理区(slab描述符+kmem_bufctl_t数组)的存储位置
  • 调用calculate_slab_order()进行相关项的计算,包括分配给slab的页阶数,碎片大小,slab的对象数
  • 计算着色偏移和可用的颜色数量
  • 调用setup_cpu_cache()分配array_cache描述符和kmem_list3描述符并初始化相关变量
  • 最后将缓存描述符插入cache_chain中
  • 销毁缓存首先要保证的一点就是缓存当中所有的对象都是空闲的,也就是之前分配出去的对象都已经释放回来了,其主要的步骤如下
  • cache的销毁依次检查和释放本地CPU cache、共享cache、三链以及cache本身。从cache的创建我们看到,创建的cache主要是从cache_cache中获得的,因为cache_cache中对象的大小就是cache结构体的大小,

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
 * Remove a &struct kmem_cache object from the slab cache.
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that no one will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
void kmem_cache_destroy(struct kmem_cache *cachep)
{
	BUG_ON(!cachep || in_interrupt());

	/* Find the cache in the chain of caches. */
	get_online_cpus();
	mutex_lock(&slab_mutex);
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->list);/*将cache从cache_chain中删除*/ 
<span style="white-space:pre">	</span>
<span style="white-space:pre">	  /*释放完free链表,如果FULL链表或partial链表中还有slab,说明还有对象处于分配状态 
    		因此不能销毁该缓存!*/  </span> 
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
		list_add(&cachep->list, &slab_caches); /*重新将缓存添加到cache_chain链表中*/  
		mutex_unlock(&slab_mutex);
		put_online_cpus();
		return;
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
		rcu_barrier();

	__kmem_cache_destroy(cachep);/*释放cache所涉及到的各个描述符的存储对象*/  
	mutex_unlock(&slab_mutex);
	put_online_cpus();

static int __cache_shrink(struct kmem_cache *cachep)
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	/*将本地高速缓存,share本地高速缓存以及l3-->alien高速缓存的空闲对象释放slab*/
	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (!l3)
			continue;
                  /*销毁空闲链表中的slab*/
		drain_freelist(cachep, l3, l3->free_objects);

		/*判断full和partial是否为空,有一个不为空则ret就为1*/
		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
	}
	return (ret ? 1 : 0);
}




static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;
	/* 释放每个cpu local cache使用的struct array_cache对象
	,注意此时是online cpu, cpu如果是down状
      态,并没有释放 */
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {/*对每个在线的节点*/
		l3 = cachep->nodelists[i];
		if (l3) {
			/* 释放shared local cache使用的struct array_cache对象 */
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);/*释放三链*/
		}
	}
	/*释放cache,因为该cache为cache_cache中的对象,所以调用对象释放
	函数*/
	kmem_cache_free(&cache_cache, cachep);
}


static void drain_cpu_caches(struct kmem_cache *cachep)
{
	struct kmem_list3 *l3;
	int node;

	on_each_cpu(do_drain, cachep, 1);
	check_irq_on();
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);  //destory arraycache
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
			drain_array(cachep, l3, l3->shared, 1, node);//destory share arraycache
	}
}

/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
{
	struct list_head *p;
	int nr_freed;
	struct slab *slabp;

	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {/*slab中的对象还未释放完并且free链表不为空*/ 

		spin_lock_irq(&l3->list_lock);
		p = l3->slabs_free.prev;
		if (p == &l3->slabs_free) {/*链表中已无元素*/  
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}

		slabp = list_entry(p, struct slab, list);/*从free链表中取出一个slab*/  
#if DEBUG
		BUG_ON(slabp->inuse);
#endif
		list_del(&slabp->list);/*从链表中删除*/ 
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;   /*空闲对象数量总数减去num*/  
		spin_unlock_irq(&l3->list_lock);
		slab_destroy(cache, slabp);<span style="font-family: Consolas, 'Courier New', Courier, mono, serif; font-size: 13.3333px; line-height: 20px; background-color: rgb(248, 248, 248);"></span> /*销毁slab   见后面slab 销毁分析* /  <span style="margin: 0px; padding: 0px; border: none; font-family: Consolas, 'Courier New', Courier, mono, serif; font-size: 13.3333px; line-height: 20px; background-color: rgb(248, 248, 248);"></span>
		nr_freed++;
	}
out:
	return nr_freed;
}

/
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	/*释放存储本地高速缓存描述符的对象*/
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			/*释放存储共享本地高速缓存描述符的对象*/
			kfree(l3->shared);
			/*释放存储alien本地高速缓存描述符的对象*/
			free_alien_cache(l3->alien);
			/*释放存储kmem_list3描述符的对象*/
			kfree(l3);
		}
	}
	/*释放存储缓存描述符的对象*/
	kmem_cache_free(&cache_cache, cachep);
}



你可能感兴趣的:(slab_--2 创建 销毁 cache)