nyoj 349 poj 1094 Sorting It All Out

题目:

Sorting It All Out

时间限制: 3000 ms  |  内存限制: 65535 KB
难度: 3
描述
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
输入
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
输出
For each problem instance, output consists of one line. This line should be one of the following three: 

Sorted sequence determined after xxx relations: yyy...y. 
Sorted sequence cannot be determined. 
Inconsistency found after xxx relations. 

where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence. 

样例输入
4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0

样例输出
Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.

题目大意:

给m个关系,求是否能确定n个数的大小关系,如果能,输出能开始确定的位置和关系,如果形成错乱关系,输出开始错乱的位置.否则输出不能.

题目思路:

1、题目是aov网,排顺序.要用拓扑排序

2、题目要求还要给出最先能排成的位置,所以要不断地添加,看是否能排成

3、注意三个要求的顺序  有圈>有顺序>无顺序  

题目优化

1、如果找到答案,就不必搜索

2、如果输入的与前面相同,不用搜索

 

程序:

 

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cctype>
#include <fstream>
#include <limits>
#include <vector>
#include <list>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <cassert>
using namespace std;
int n,m;
int in[30],t_in[30],ans[30];//in:入度  t_in入度的复制  ans 答案保存
bool t[30][30];//优化1  防止重复搜索
vector < vector <int> >ve;
int aov();
int main()
{
    while(~scanf("%d %d",&n,&m)&&n+m)
    {
        memset(in,-1,sizeof(in));
        memset(t,0,sizeof(t));
        int f=0;
        ve.clear();
        ve.resize(n);
        for(int i=1; i<=m; i++)
        {
            int smart,bigger;
            char s[10];
            scanf("%s",s);
            smart=s[0]-'A',bigger=s[2]-'A';
            if(t[smart][bigger]) continue;//优化1 剔除重复
            t[smart][bigger]=1;
            ve[smart].push_back(bigger);//储存关系
            if(in[smart]==-1)//-1 标记是否出现 0以上是入度
                in[smart]=0;
            if(in[bigger]==-1)
                in[bigger]=0;
            in[bigger]++;
            if(!f)//优化2 搜索成立就不用搜索了
                f=aov()*i;
        }
        if(!f)//输出结果
            printf("Sorted sequence cannot be determined.\n");
            else if(f>0)
            {
                printf("Sorted sequence determined after %d relations: ",f);
                for(int i=0; i<n; i++)
                    printf("%c",ans[i]+'A');
                printf(".\n");
            }
            else
                printf("Inconsistency found after %d relations.\n",-f);
    }
}
int aov()
{
    int t_in[30],flag=1;//t_in:复制in[]  flag标记是否出现入度为0的
    for(int i=0; i<30; i++)//复制
        t_in[i]=in[i];
    for(int k=0; k<n; k++)//每次消掉一个数
    {
        int time=0,w,f=0;
        for(int  i=0; i<n; i++)//遍历是否有入度为0的
        {
            if(t_in[i]==0)//入度为0
            {
                w=i;
                time++;
            }
            else if(t_in[i]>0)//查找是否有大于0的入度
                f=1;
        }
        if(time==1)//有顺序
        {
            t_in[w]=-1;
            ans[k]=w;
            for(int j=0; j<ve[w].size(); j++)
                t_in[ve[w][j]]--;
        }
        else if(time==0&&f) return -1;//有圈
        else//无顺序 但不知道有没有圈
        {
            flag=0;//一旦没有圈 就是无顺序
            t_in[w]=-1;
            ans[k]=w;
            for(int j=0; j<ve[w].size(); j++)
                t_in[ve[w][j]]--;
        }
    }
    return flag;
}

 

你可能感兴趣的:(拓扑排序,图论)