有个无向网络,现在Robin想从某点出发,经历每条边至少一次,最后回到原点,求最少的权和。
这个有点像是欧拉回路,其实就是的,只是呢,,,有的边会许会重复走。在欧拉回路中,点的度数必然是偶数,这题中的度数为奇数的点的偶数也必然是偶数个,因为这个是无向图。那么,图是连通的,所以最后我们需要将度数为奇数的点进行建边,其实就是这两点之间的最短路上的边再走一次。点只有15个,,,所以状压。dp[sta]表示偶数点的状态为sta的时候的最短路(回路)。从最开始的状态枚举到终态,也就是dp[(1<<n) - 1]。
// #pragma comment(linker, "/STACK:1024000000,1024000000") #include <iostream> #include <algorithm> #include <iomanip> #include <sstream> #include <string> #include <stack> #include <queue> #include <deque> #include <vector> #include <map> #include <set> #include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #include <climits> using namespace std; // #define DEBUG #ifdef DEBUG #define debug(...) printf( __VA_ARGS__ ) #else #define debug(...) #endif #define CLR(x) memset(x, 0,sizeof x) #define MEM(x,y) memset(x, y,sizeof x) #define pk push_back template<class T> inline T Get_Max(const T&a,const T&b){return a < b?b:a;} template<class T> inline T Get_Min(const T&a,const T&b){return a < b?a:b;} typedef long long LL; typedef unsigned long long ULL; typedef pair<int,int> ii; const double eps = 1e-10; const double PI = acos(-1.0); const int inf = 1 << 30; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; int dist[20][20]; int deg[20]; int dp[(1<<15)+10];//dp[i]表示偶数定点状态为i时的最短路; int main() { // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); int t, n, m; int icase = 0; scanf("%d",&t); while(t--){ scanf("%d%d",&n,&m); memset(dp, INF,sizeof dp); memset(dist, INF,sizeof dist); memset(deg, 0,sizeof deg); int u, v, c; int sum = 0, sta = 0; for (int i = 1;i <= m;++i){ scanf("%d%d%d",&u,&v,&c); sum += c; deg[u]++,deg[v]++; dist[u][v] = dist[v][u] = min(dist[u][v], c); } for (int i = 1;i <= n;++i){ dist[i][i] = 0; if (deg[i]%2==0){ sta |= (1<<(i-1)); } } for (int k = 1;k <= n;++k){ for (int i = 1;i <= n;++i){ for (int j = 1;j <= n;++j){ dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } dp[sta] = sum;//初始状态 for (int i = sta;i < (1<<n)-1;++i){//枚举状态 for (int j = 0;j < n;++j){ if (i & (1<<j)) continue; //(j+1)节点此时的度数为奇; for (int k = 0;k < n;++k){ if (j==k) continue; if (i & (1<<k)) continue; int now = (i | (1<<j)); now |= (1<<k);//(k,j)建边 dp[now] = min(dp[now],dp[i] + dist[j+1][k+1]); } } } printf("Case %d: %d\n", ++icase,dp[(1<<n)-1]); } return 0; }
这个跑得更快
// #pragma comment(linker, "/STACK:1024000000,1024000000") #include <iostream> #include <algorithm> #include <iomanip> #include <sstream> #include <string> #include <stack> #include <queue> #include <deque> #include <vector> #include <map> #include <set> #include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #include <climits> using namespace std; // #define DEBUG #ifdef DEBUG #define debug(...) printf( __VA_ARGS__ ) #else #define debug(...) #endif #define CLR(x) memset(x, 0,sizeof x) #define MEM(x,y) memset(x, y,sizeof x) #define pk push_back template<class T> inline T Get_Max(const T&a,const T&b){return a < b?b:a;} template<class T> inline T Get_Min(const T&a,const T&b){return a < b?a:b;} typedef long long LL; typedef unsigned long long ULL; typedef pair<int,int> ii; const double eps = 1e-10; const int inf = 1 << 30; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; int dist[20][20]; int deg[20]; int dp[(1<<15)+10]; int n,m; int dfs(int sta){ if (dp[sta] != INF) return dp[sta]; if (sta == (1<<n)-1) return 0; for (int i = 0;i < n;++i){ if (!(sta & (1<<i))){ for (int j = i + 1;j < n;++j){ if (!(sta & (1<<j))){ int nxt = sta|(1<<i)|(1<<j); dp[sta] = min(dp[sta], dfs(nxt) + dist[i+1][j+1]); } } } } return dp[sta]; } int main() { // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); int t, icase = 0; scanf("%d",&t); while(t--){ scanf("%d%d",&n,&m); memset(dp, INF,sizeof dp); memset(dist, INF,sizeof dist); memset(deg, 0,sizeof deg); int sum = 0, sta = 0; int u, v, c; for (int i = 1;i <= m;++i){ scanf("%d%d%d",&u,&v,&c); sum += c; deg[u]++; deg[v]++; dist[u][v] = dist[v][u] = min(dist[u][v], c); } for (int i = 1;i <= n;++i){ dist[i][i] = 0; if (deg[i]%2==0){ sta |= (1<<(i-1)); } } for (int k = 1;k <= n;++k){ for (int i = 1;i <= n;++i){ for (int j = 1;j <= n;++j) dist[i][j] = min(dist[i][j],dist[i][k] + dist[k][j]); } } // dp[sta] = sum; sum += dfs(sta); printf("Case %d: %d\n", ++icase, sum); } return 0; }