- Pyecharts数据可视化大屏:打造沉浸式数据分析体验
我的运维人生
信息可视化数据分析数据挖掘运维开发技术共享
Pyecharts数据可视化大屏:打造沉浸式数据分析体验在当今这个数据驱动的时代,如何将海量数据以直观、生动的方式展现出来,成为了数据分析师和企业决策者关注的焦点。Pyecharts,作为一款基于Python的开源数据可视化库,凭借其丰富的图表类型、灵活的配置选项以及高度的定制化能力,成为了构建数据可视化大屏的理想选择。本文将深入探讨如何利用Pyecharts打造数据可视化大屏,并通过实际代码案例
- Faiss Tips:高效向量搜索与聚类的利器
焦习娜Samantha
FaissTips:高效向量搜索与聚类的利器faiss_tipsSomeusefultipsforfaiss项目地址:https://gitcode.com/gh_mirrors/fa/faiss_tips项目介绍Faiss是由FacebookAIResearch开发的一个用于高效相似性搜索和密集向量聚类的库。它支持多种硬件平台,包括CPU和GPU,能够在海量数据集上实现快速的近似最近邻搜索(AN
- Hadoop
傲雪凌霜,松柏长青
后端大数据hadoop大数据分布式
ApacheHadoop是一个开源的分布式计算框架,主要用于处理海量数据集。它具有高度的可扩展性、容错性和高效的分布式存储与计算能力。Hadoop核心由四个主要模块组成,分别是HDFS(分布式文件系统)、MapReduce(分布式计算框架)、YARN(资源管理)和HadoopCommon(公共工具和库)。1.HDFS(HadoopDistributedFileSystem)HDFS是Hadoop生
- hbase介绍
CrazyL-
云计算+大数据hbase
hbase是一个分布式的、多版本的、面向列的开源数据库hbase利用hadoophdfs作为其文件存储系统,提供高可靠性、高性能、列存储、可伸缩、实时读写、适用于非结构化数据存储的数据库系统hbase利用hadoopmapreduce来处理hbase、中的海量数据hbase利用zookeeper作为分布式系统服务特点:数据量大:一个表可以有上亿行,上百万列(列多时,插入变慢)面向列:面向列(族)的
- Flume:大规模日志收集与数据传输的利器
傲雪凌霜,松柏长青
后端大数据flume大数据
Flume:大规模日志收集与数据传输的利器在大数据时代,随着各类应用的不断增长,产生了海量的日志和数据。这些数据不仅对业务的健康监控至关重要,还可以通过深入分析,帮助企业做出更好的决策。那么,如何高效地收集、传输和存储这些海量数据,成为了一项重要的挑战。今天我们将深入探讨ApacheFlume,它是如何帮助我们应对这些挑战的。一、Flume概述ApacheFlume是一个分布式、可靠、可扩展的日志
- 高职人工智能训练师边缘计算实训室解决方案
武汉唯众智创
人工智能训练师边缘计算实训室人工智能训练师实训室边缘计算实训室
一、引言随着物联网(IoT)、大数据、人工智能(AI)等技术的飞速发展,计算需求日益复杂和多样化。传统的云计算模式虽在一定程度上满足了这些需求,但在处理海量数据、保障实时性与安全性、提升计算效率等方面仍面临诸多挑战。在此背景下,边缘计算作为一种新兴的计算模式应运而生,通过将计算能力推向数据生成或用户所在的网络边缘,显著降低了数据传输的延迟,提升了处理效率,并增强了数据安全性。针对高等职业院校的人工
- Spark集群的三种模式
MelodyYN
#Sparksparkhadoopbigdata
文章目录1、Spark的由来1.1Hadoop的发展1.2MapReduce与Spark对比2、Spark内置模块3、Spark运行模式3.1Standalone模式部署配置历史服务器配置高可用运行模式3.2Yarn模式安装部署配置历史服务器运行模式4、WordCount案例1、Spark的由来定义:Hadoop主要解决,海量数据的存储和海量数据的分析计算。Spark是一种基于内存的快速、通用、可
- HBase(一)——HBase介绍
weixin_30595035
大数据数据库数据结构与算法
HBase介绍1、关系型数据库与非关系型数据库(1)关系型数据库关系型数据库最典型的数据机构是表,由二维表及其之间的联系所组成的一个数据组织优点:1、易于维护:都是使用表结构,格式一致2、使用方便:SQL语言通用,可用于复杂查询3、复杂操作:支持SQL,可用于一个表以及多个表之间非常复杂的查询缺点:1、读写性能比较差,尤其是海量数据的高效率读写2、固定的表结构,灵活度稍欠3、高并发读写需求,传统关
- HBase介绍
mingyu1016
数据库
概述HBase是一个分布式的、面向列的开源数据库,源于google的一篇论文《bigtable:一个结构化数据的分布式存储系统》。HBase是GoogleBigtable的开源实现,它利用HadoopHDFS作为其文件存储系统,利用HadoopMapReduce来处理HBase中的海量数据,利用Zookeeper作为协同服务。HBase的表结构HBase以表的形式存储数据。表有行和列组成。列划分为
- Java中的大数据处理框架对比分析
省赚客app开发者
java开发语言
Java中的大数据处理框架对比分析大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天,我们将深入探讨Java中常用的大数据处理框架,并对它们进行对比分析。大数据处理框架是现代数据驱动应用的核心,它们帮助企业处理和分析海量数据,以提取有价值的信息。本文将重点介绍ApacheHadoop、ApacheSpark、ApacheFlink和ApacheStorm这四种流行的
- 海量数据查找最大K个值:数据结构与算法的选择
星辰@Sea
数据结构Java数据结构
在处理大数据集时,经常需要找到数据集中最大的K个元素,这样的需求在很多领域都有广泛应用,例如推荐系统中寻找评分最高的K个商品、数据分析中找出最重要的K个特征、搜索引擎中找到排名前K的结果等等。面对海量数据,传统的排序方法可能不再适用,因为它们通常具有较高的时间复杂度。因此,选择合适的数据结构和算法对于提高效率至关重要。本文将详细介绍如何在海量数据集中查找最大的K个值,探讨不同的数据结构与算法选择,
- 【架构师之路】四、系统架构
蜗牛互联网
架构Java数据库运维
高并发,大流量Google日均PV数35亿,日均IP访问数3亿微信在线用户数10亿天猫双十一活动一天交易额3000亿高可用系统7*24小时不间断服务。大型互联网站的宕机事件通常会成为新闻焦点。海量数据需要存储、管理海量数据。Facebook每周上传的照片数目接近10亿百度收录的网页数目有数百亿Google有近百万台服务器为全球用户提供服务用户分布广泛,网络情况复杂中美光缆的数次故障,也让一些对国外
- 淘宝海量数据库OceanBase:系统架构详解
weixin_34356555
数据库系统架构大数据
无论从数据量还是访问量,OceanBase不再能够是一个单机系统,即使一台单机能服务高达几个TB的数据、提供几万QPS的服务能力,因此,分布式系统不可避免,然而,内部如何实现拆表(拆库)以及如何实现数据库的事务,成为了一个很大的挑战和十分艰难的抉择:相关文章:淘宝海量数据库之一:来自业务的挑战淘宝海量数据库之二:一致性选择淘宝海量数据库之三:事务的ACID一种选择是当前数据库的常用的水平拆库,淘宝
- 大家对人工智能的发展怎么看?
川哥说运营
人工智能
对人工智能产品发展的几点认识说起人工智能的时候,大家都在说是机器具有了人的思维,可以进行情感表达,决策判断。并且通过越多的数据和越长的训练,智能性会越来越高。那么这种智能怎么来评价其可用性,包括怎么训练,怎么集成,怎么选择呢?人工智能的基础在这个点上,我们谈一下要做到人工智能需要的几个必备条件。海量数据“海量”数据究竟是多少,其实对于不同的学习目标标准是不一样的。训练一个具有智能和学习能力的算法,
- 数据治理:企业如何精准管理与高效利用数据?
ShiTuanWang
数据挖掘大数据数据分析网络
当今这个信息爆炸的时代,数据已成为企业最宝贵的资产之一。随着大数据、云计算、人工智能等技术的飞速发展,如何有效管理和利用数据,以驱动业务增长、优化决策过程、提升用户体验,成为了每一家企业都需直面的重大挑战。在数字化转型的浪潮中,数据不再是冷冰冰的数字堆砌,而是转化为洞察市场、预测趋势、指导决策的重要力量。然而,海量数据的快速增长也带来了存储、处理、分析及安全等方面的多重挑战。企业若想在竞争激烈的市
- StarRocks on AWS Graviton3,实现 50% 以上性价比提升
StarRocks_labs
大数据数据库数据仓库湖仓一体云计算
在数据时代,企业拥有前所未有的大量数据资产,但如何从海量数据中发掘价值成为挑战。数据分析凭借强大的分析能力,可从不同维度挖掘数据中蕴含的见解和规律,为企业战略决策提供依据。数据分析在营销、风险管控、产品优化等领域发挥着关键作用,帮助企业提高运营效率、优化业务流程、发现新商机、增强竞争力。低成本高效率的完成对海量数据的分析,及时准确的释放数据价值,已成为企业赢得竞争优势的利器。StarRockson
- HBase
傲雪凌霜,松柏长青
大数据后端hbase数据库大数据
ApacheHBase是一个基于Hadoop分布式文件系统(HDFS)构建的分布式、面向列的NoSQL数据库,主要用于处理大规模、稀疏的表结构数据。HBase的设计灵感来自Google的Bigtable,能够在海量数据中提供快速的随机读写操作,适合需要低延迟和高吞吐量的应用场景。HBase核心概念表(Table):HBase的数据存储在表中,与传统的关系型数据库不同,HBase的表是面向列族(Co
- Hive的优势与使用场景
傲雪凌霜,松柏长青
后端大数据hivehadoop数据仓库
Hive的优势Hive作为一个构建在Hadoop上的数据仓库工具,具有许多优势,特别是在处理大规模数据分析任务时。以下是Hive的主要优势:1.与Hadoop生态系统的紧密集成Hive构建在Hadoop分布式文件系统(HDFS)之上,能够处理海量数据并进行分布式计算。它利用Hadoop的MapReduce或Spark来执行查询,具备高度扩展性,适合大数据处理。2.支持SQL-like查询语言(Hi
- 大数据技术之Hadoop(一)
pauls
Hadoop概述1.1Hadoop是什么Hadoop是什么1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构。2)主要解决,海量数据的存储和海量数据的分析计算问题。3)广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。Hadoop生态1.2Hadoop发展历史(了解)Hadoop发展历史1)Hadoop创始人DougCutting,为了实现与Google类似
- ES elasticsearch集群入门
小P聊技术
1介绍使用单机的版的elasticsearch可以完成检索,但是如果要实现高可用的话,就需要搭建集群。集群不仅可以实现高可用,也能实现海量数据存储的横向扩展。2核心原理每个索引会被分成多个分片shards进行存储,默认创建索引是分配5个分片进行存储。每个分片都会分布式部署在多个不同的节点上进行部署,该分片成为primaryshards。注意:索引的主分片primaryshards定义好后,后面不能
- 使用AI大模型进行企业数据分析与决策支持
MarkHD
人工智能数据分析数据挖掘
使用AI大模型进行企业数据分析与决策支持已成为现代企业管理的重要趋势。AI大模型凭借其强大的数据处理能力和智能分析功能,能够为企业提供精准、高效的数据分析服务,进而支持企业的决策过程。以下是使用AI大模型进行企业数据分析与决策支持的具体方式和优势:一、AI大模型在数据分析中的应用超级数据处理能力海量数据处理:AI大模型能够同时处理海量数据,包括结构化数据、非结构化数据等,满足企业大规模数据分析的需
- CPU服务器如何应对大规模并行计算需求?
Jtti
服务器运维
大规模并行计算是指利用多个处理单元同时处理计算任务,以提高计算效率和缩短完成时间。这种计算方式常用于科学计算、数据分析、机器学习、图像处理等领域,面对海量数据与复杂计算时,传统的串行计算往往显得无能为力。现代CPU通常具备多个核心,这使得它们能够在同一时间内并行执行多个线程或任务。多核处理器可以大幅提升并行计算能力,适合处理大型计算任务。CPU服务器通常配备多级高速缓存(L1、L2、L3),有效减
- 图像去噪算法代码c语言,深度学习图像去噪代码
weixin_39777018
图像去噪算法代码c语言
AI开发平台ModelArtsModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。按需/包周期付费可选,最低0.00元/小时导入操作||https://support.huaweicloud.com/engineers-
- 【Spark高级应用】使用Spark进行高级数据处理与分析
爱技术的小伙子
大数据sparkajax大数据
Spark高级应用使用Spark进行高级数据处理与分析引言在大数据时代,快速处理和分析海量数据是每个企业面临的重大挑战。ApacheSpark作为一种高效的分布式计算框架,凭借其高速、易用、通用和灵活的特点,已经成为大数据处理和分析的首选工具。本文将深入探讨如何使用Spark进行高级数据处理与分析,通过实际案例和代码示例,帮助你掌握Spark的高级应用技巧。提出问题如何进行高效的大规模数据处理?如
- 大数据(Big Data):探索信息时代的海量数据世界
hong161688
大数据
大数据(BigData):探索信息时代的海量数据世界一、大数据的定义与特点大数据(BigData),或称巨量资料,是指那些在传统数据处理应用软件无法有效捕捉、管理和处理的数据集合。这些数据集通常具有海量、高增长率和多样化的特点,需要新的处理模式才能赋予其更强的决策力、洞察发现力和流程优化能力。大数据的“大”不仅体现在数据量的规模上,更在于其处理难度和复杂性,以及对信息提取和价值挖掘的需求。大数据的
- 国产海量数据库安装部署文档
人生不过大梦一场
db数据库windowslinux
本系统为麒麟V10系统,安装用户为普通用户给予sudo权限,主机内存16G(8G安装没装起来)#默认端口5432对外端口数据库对外提供访问5433对内端口Basebackup与复制流协议系统环境设置#关闭防火墙(二者执行一个)sudosystemctlstopfirewalld.service&&sudosystemctldisablefirewalld&&sudosystemctlstatusf
- 布隆过滤器
guangzhi0633
面试职场和发展
揭秘数据筛选的神秘利器在浩瀚的数据海洋中,如何快速、准确地找到我们需要的信息?这不仅是数据科学家的难题,也是每一个与数据打交道的人面临的挑战。今天,让我们一起走进布隆过滤器(BloomFilter)的世界,看看这个被誉为“筛选神器”的技术如何帮助我们在海量数据中淘金。布隆过滤器的奥秘想象一下,你手中有一个巨大的筛子,它不仅能过滤掉无用的沙子,还能智能地保留下珍贵的金粒。布隆过滤器就是这样的“智慧筛
- Redis概述
AC编程
一、为什么需要NoSQLHighperformance高并发读写HugeStorage海量数据的高效率存储和访问HighScalability&&HighAvailability高可拓展性和高可用性二、NoSQL数据库的四大分类键值(Key-Value)存储列存储文档数据库图形数据库三、四类NoSQL数据库比较键值(Key-Value)存储相关产品:Redis、Voldemort、TokyoCab
- 人工智能训练师边缘计算实训室解决方案
武汉唯众智创
人工智能训练师边缘计算实训室人工智能训练师边缘计算实训室
一、引言随着物联网(IoT)、大数据、人工智能(AI)等技术的飞速发展,计算需求日益复杂和多样化。传统的云计算模式虽在一定程度上满足了这些需求,但在处理海量数据、保障实时性与安全性、提升计算效率等方面仍面临诸多挑战。边缘计算作为一种新兴的计算模式应运而生,通过将计算能力推向数据生成或用户所在的网络边缘,显著降低了数据传输的延迟,提升了处理效率,并增强了数据安全性。在此背景下,唯众提出了《人工智能训
- 守护云安全:数据保护与合规的最佳实践
网安加社区
安全网络云安全云原生数据安全
随着云技术的蓬勃发展,企业对云服务日益依赖,保障用于存储与管理海量数据的云端平台的安全性也变得极其重要。如何保障云安全的背后也隐藏着一个不容忽视的要点:数据安全责任需由云服务提供商与客户共同承担。这种责任共担模型规定,云服务提供商负责保护其服务基础设施的安全,企业负责保护其在云环境中的数据和应用程序的安全。但当涉及基础设施即服务(IaaS)与平台即服务(PaaS)等多种服务模式时,执行这种责任共担
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓