http://poj.org/problem?id=3159
题目大意:
n个小朋友分糖果,你要满足他们的要求(a b x 意思为b不能超过a x个糖果)并且编号1和n的糖果差距要最大。
思路:
嗯,我先揭发一下,1号是分糖果的孩子,班长大人!(公报私仇啊。。。,欺负N号的小朋友~ 好吧,我开玩笑的)
嗯,这题要求最短路径。为啥是最短?你以前都在玩最长呀~
因为这题要求的是最大的。图的三角不等式有:d[v]- d[u]<=w(u,v); d[v]<=d[u]+w(u,v); 即而松弛的条件为: if(d[v]>d[u]+w(u,v)) d[v]=d[u]+w(u,v); 通过不断的松弛,使得d的值不断变小,直到满足所有条件,也就是说满足条件的时候就是最大的了~
建立图,b - a <=x 然后就是spfa了,不过这题竟然卡队列了。。看discuss人家用stack,然后我也改了,就这样过了。。。。。。
还有这题不能建立超级源点。
设第i个小孩子分到的糖果为s[i],那么 有s[i]>=0
而上面的是b-a<=x,由于这题求的是最短路径,所以要改为小于号也就是 -s[i]<=0,然后如果添加一个点比如说0那么就是应该从i到0了,那么就无用了。。。。
#include<cstdio> #include<cstring> #include<stack> using namespace std; const int MAXN=30000+10; const int MAXM=350000; const int INF=-999999; int n,m,head[MAXN],len,dis[MAXN]; bool vis[MAXN]; struct edge { int to,val,next; }e[MAXM]; void add(int from,int to,int val) { e[len].to=to; e[len].val=val; e[len].next=head[from]; head[from]=len++; } void spfa() { int s=1; stack<int> q; q.push(s); vis[s]=true; dis[s]=0; while(!q.empty()) { int cur=q.top(); q.pop(); vis[cur]=false; for(int i=head[cur];i!=-1;i=e[i].next) { int id=e[i].to; if(dis[id] > dis[cur] + e[i].val) { dis[id]=dis[cur]+e[i].val; if(!vis[id]) { q.push(id); vis[id]=true; } } } } } int main() { while(~scanf("%d%d",&n,&m)) { for(int i=1;i<=n;i++) { head[i]=-1; dis[i]=-INF; vis[i]=false; } len=0; for(int i=0;i<m;i++) { int from,to,val; scanf("%d%d%d",&from,&to,&val); add(from,to,val); } spfa(); printf("%d\n",dis[n]); } return 0; }