poj3682 King Arthur's Birthday Celebration

题目:

国王庆祝生日,第i天花费2i-1(千)个硬币,至于哪一天结束,给定一个正整数k,每天抛一次硬币,如果出现第k次正面朝上,就结束庆祝,正面朝上的概率为p。

问庆祝的天数和花费的金币的期望。


思路:

纯概率题,

设f[i]为第i天结束的概率,则f[i]=c(i-1,k-1)*p^k*(1-p)^(i-k),然而总概率为 ∑f[i]=1,其中i∈[k,+∞),以下均为此范围
则有,p^k*(c(i-1,k-1)*(1-p)^(i-k))=1,即:∑(c(i-1,k-1)*(1-p)^(i-k))=1/(p^k),该等式下面有用
那么,天数的期望:
days =∑(i*f[i])

=p^k*∑(i*c(i-1,k-1)*(1-p)^(i-k))

=k*p^k*∑(c(i,k)*(1-p)^(i-k))

=k*p^k/p^(k+1)

=k/p


花费的期望:

cost=∑(i*i*f[i]) //第i天结束的话就花费1+3+5+...+2i-1=i*i;

=p^k*∑(i*i*c(i-1,k-1)*(1-p)^(i-k))

=k*p^k*∑(i*c(i,k)*(1-p)^(i-k))

=k*p^k*∑((i+1)*c(i,k)*(1-p)^(i-k))-p^k*∑(c(i,k)*(1-p)^(1-k))

=k*(k+1)*p^k*∑(c(i+1,k+1)*(1-p)^(i-k))-days

=k*(k+1)*p^k/(p^(k+2))-days

=k*(k+1)/p^2-days

=days*(k+1)/p-days



#include <iostream>
#include <cmath>
#include <stdio.h>
#include <map>
#include <algorithm>
using namespace std;
#define LL long long 
#define MAX 1000010

int main()
{
	int n,k;
	double p;
	while (scanf("%d",&k),k)
	{
		scanf("%lf",&p);
		double ans=k/p;
		printf("%.3lf %.3lf\n",ans,ans*(k+1)/p-ans);
	}

}



你可能感兴趣的:(poj3682 King Arthur's Birthday Celebration)