Triangle Counting
You are given n rods of length 1, 2…, n. You have to pick any 3 of them & build a triangle. How many distinct triangles can you make? Note that, two triangles will be considered different if they have at least 1 pair of arms with different length.
Input
The input for each case will have only a single positive integer n (3<=n<=1000000). The end of input will be indicated by a case with n<3. This case should not be processed.
Output
For each test case, print the number of distinct triangles you can make.
Sample Input
5
8
0
Output for Sample Input
3
22
题意: 给出1~n的数, 求出能组合成三角形的三个数有多少组, 每组内的数都要不一样.
解题思路:
1. 训练指南里面很详细, 设x是最大的边, 其余的为y,z; 根据三角形性质有: x>y+z 和 x-y < z < x;
2. 解有: 0+1+2+3+...+(x-2) = (x-1)*(x-2)/2; 但是结果里面有y == z的情况和每个三角形算了两次.
即: 最大边长为x的三角形有: ( (x-1)*(x-2)/2 - (x-1) + x/2 ) / 2;
3. 最终结果: f[i] = f[i-1] + 最大边长为i的三角形的个数.
#include<stdio.h> typedef long long ll; ll f[1000005]; int main() { int n; for(ll i=3; i <= 1000005; i++) f[i]=f[i-1]+((i-1)*(i-2)/2-(i-1)+i/2)/2; while(~scanf("%d",&n)&&n>2) { printf("%lld\n",f[n]); } return 0; }