尼姆博弈和巴什博弈

尼姆博弈

有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

这种情况最有意思,它与二进制有密切关系,我们用(abc)表示某种局势,首先(000)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0nn),只要与对手拿走一样多的物品,最后都将导致(000)。仔细分析一下,(123)也是奇异局势,无论对手如何拿,接下来都可以变为(0nn)的情形。

计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(+)表示这种运算,先看(1,2,3)的按位模2加的结果:

1 =二进制01

2 =二进制10

3 =二进制11 (+)

———————

0 =二进制00 (注意不进位)

对于奇异局势(0,n,n)也一样,结果也是0。

任何奇异局势(a,b,c)都有a(+)b(+)c =0。

如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b < c,我们只要将 c 变为 a(+)b,即可,因为有如下的运算结果: a(+)b(+)(a(+)b)=(a(+)a)(+)(b(+)b)=0(+)0=0。要将c 变为a(+)b,只要从 c中减去 c-(a(+)b)即可。

注:异或:相同位上,相同为0,不同则为1

例 1: (14,21,39),14(+)21=27,39-27=12,所以从39中拿走12个物体即可达到奇异局势(14,21,27)

例 2: (55,81,121),55(+)81=102,121-102=19,所以从121中拿走19个物品就形成了奇异局势(55,81,102)

例 3: (29,45,58),29(+)45=48,58-48=10,从58中拿走10个,变为(29,45,48)


巴什博弈


只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。

然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的

物品,后者取胜。


因此我们发现了如何取胜的法则:如果n=m+1r+s,(r为任意自然数s≤m),那么先取

者要拿走s个物品,如果后取者拿走k≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以

后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。



你可能感兴趣的:(算法,博弈论)