- 梯度提升机 (Gradient Boosting Machines, GBM)
ALGORITHM LOL
boosting集成学习机器学习
梯度提升机(GradientBoostingMachines,GBM)通俗易懂算法梯度提升机(GradientBoostingMachines,GBM)是一种集成学习算法,主要用于回归和分类问题。GBM本质上是通过训练一系列简单的模型(通常是决策树),然后将这些模型组合起来,从而提高整体预测性能。基本步骤初始模型:首先,我们用一个简单的模型(如一个常数值)作为预测模型,记为F0(x)F_0(x)F
- 十大机器学习算法-梯度提升决策树(GBDT)
zjwreal
机器学习GBDT机器学习梯度提升提升树梯度提升决策树
简介梯度提升决策树(GBDT)由于准确率高、训练快速等优点,被广泛应用到分类、回归合排序问题中。该算法是一种additive树模型,每棵树学习之前additive树模型的残差。许多研究者相继提出XGBoost、LightGBM等,又进一步提升了GBDT的性能。基本思想提升树-BoostingTree以决策树为基函数的提升方法称为提升树,其决策树可以是分类树或者回归树。决策树模型可以表示为决策树的加
- AdaBoost算法(AdbBoost Algorithm)—有监督学习方法、非概率模型、判别模型、非线性模型、非参数化模型、批量学习
剑海风云
ArtificialIntelligence人工智能机器学习提升方法AdaBoost
定义输入:训练数据集T={(x1,y1),(x2,y2),⋯ ,(xN,yN)}T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\}T={(x1,y1),(x2,y2),⋯,(xN,yN)},其中,xi∈χ⊆Rn,yi∈y={−1,+1}x_i\in\chi\subseteqR^n,y_i\in{\tty}=\{-1,+1\}xi∈χ⊆Rn,yi∈y={−1,+1}
- 《机器学习》—— XGBoost(xgb.XGBClassifier) 分类器
张小生180
机器学习人工智能
文章目录一、XGBoost分类器的介绍二、XGBoost(xgb.XGBClassifier)分类器与随机森林分类器(RandomForestClassifier)的区别三、XGBoost(xgb.XGBClassifier)分类器代码使用示例一、XGBoost分类器的介绍XGBoost分类器是一种基于梯度提升决策树(GradientBoostingDecisionTree,GBDT)的集成学习算
- 2024 数学建模国赛 C 题模型及算法(无废话版)
不染53
数学建模数学建模算法python
目录写在开始需要掌握的数学模型/算法评价体系/评价类问题时间序列处理数据降维聚类问题(无监督)分类问题(有监督)集成学习(Bagging/Boosting)回归问题关联分析统计学方法/统计模型智能优化算法需要掌握的Python专业库需要掌握的软件/工具写在开始本人获2023年数学建模国赛C题国家级一等奖,备赛期间专攻C题。本文总结了在备赛期间总结的模型和算法,足以应对90%国赛C题中涉及到的问题。
- Spark MLlib模型训练—回归算法 Random forest regression
不二人生
SparkML实战spark-ml回归随机森林
SparkMLlib模型训练—回归算法Randomforestregression随机森林回归(RandomForestRegression)是一种集成学习方法,通过结合多个决策树的预测结果来提升模型的准确性和稳健性。相较于单一的决策树模型,随机森林通过随机采样和多棵树的集成,减少了模型的方差,从而在处理复杂数据集时展现出更好的性能。本文将详细介绍随机森林回归的原理、实现方法、应用场景,并通过Sc
- 基于Python的机器学习系列(18):梯度提升分类(Gradient Boosting Classification)
会飞的Anthony
信息系统机器学习人工智能机器学习python分类
简介梯度提升(GradientBoosting)是一种集成学习方法,通过逐步添加新的预测器来改进模型。在回归问题中,我们使用梯度来最小化残差。在分类问题中,我们可以利用梯度提升来进行二分类或多分类任务。与回归不同,分类问题需要使用如softmax这样的概率模型来处理类别标签。梯度提升分类的工作原理梯度提升分类的基本步骤与回归类似,但在分类任务中,我们使用概率模型来处理预测结果:初始化模型:选择一个
- 基于Python的机器学习系列(17):梯度提升回归(Gradient Boosting Regression)
会飞的Anthony
人工智能信息系统机器学习机器学习python回归
简介梯度提升(GradientBoosting)是一种强大的集成学习方法,类似于AdaBoost,但与其不同的是,梯度提升通过在每一步添加新的预测器来减少前一步预测器的残差。这种方法通过逐步改进模型,能够有效提高预测准确性。梯度提升回归的工作原理在梯度提升回归中,我们逐步添加预测器来修正模型的残差。以下是梯度提升的基本步骤:初始化模型:选择一个初始预测器h0(x),计算该预测器的预测值。计算残差:
- 基于Python的机器学习系列(16):扩展 - AdaBoost
会飞的Anthony
信息系统机器学习人工智能python机器学习开发语言
简介在本篇中,我们将扩展之前的AdaBoost算法实现,深入探索其细节并进行一些修改。我们将重点修复代码中的潜在问题,并对AdaBoost的实现进行一些调整,以提高其准确性和可用性。1.修复Alpha计算中的问题在AdaBoost中,如果分类器的错误率e为0,则计算出的权重α将是未定义的。为了解决这个问题,我们可以在计算过程中向分母中添加一个非常小的值,以避免除零错误。2.调整学习率sklearn
- 基于CNN-BiLSTM-Adaboost风电功率预测研究(Matlab代码实现)
创新优化代码学习
cnnmatlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、研究方法1.数据准备与预处理2.CNN特征提取3.BiLSTM序列建模4.Adaboost集成学习5.模型训练与评估三、研究优势四、未来展望2运行结果3参考文献4Matlab代码、数据⛳️赠与读者做科研,涉及到一个深在的思想系
- 机器学习基础(四)——决策树与随机森林
Bayesian小孙
机器学习基础决策树机器学习随机森林
决策树与随机森林文章目录决策树与随机森林一、知识概要(一)二、决策树使用的算法三、sklearn决策树API四、决策树的案例1.数据清洗2.特征工程3.调用决策树API五、集成学习方法-随机森林1.知识概要(二)2.集成学习API3.随机森林的案例importpandasaspdfromsklearn.feature_extractionimportDictVectorizerfromsklear
- 机器学习 之 决策树与随机森林的实现
SEVEN-YEARS
机器学习决策树随机森林
引言随着互联网技术的发展,垃圾邮件过滤已成为一项重要的任务。机器学习技术,尤其是决策树和随机森林,在解决这类问题时表现出色。本文将介绍随机森林的基本概念,并通过一个具体的案例——筛选垃圾电子邮件——来展示随机森林的实际应用。随机森林简介随机森林是一种基于决策树的集成学习方法,它通过构建多个决策树并综合它们的预测结果来提高准确性和防止过拟合。随机森林的工作原理主要包括以下几个步骤:自助采样:从原始数
- 【KELM回归预测】基于麻雀算法优化核极限学习SSA-KELM-Adaboost实现风电回归预测附matlab代码
天天酷科研
粉丝福利算法回归学习SSA-KELM-Ada
以下是使用麻雀算法优化核极限学习机(SSA-KELM)和Adaboost算法实现风电回归预测的MATLAB代码示例:matlab复制%导入风电数据load(‘wind_data.mat’);%假设数据存储在wind_data.mat文件中X=wind_data(:,1:end-1);%输入特征Y=wind_data(:,end);%输出标签%数据归一化X=normalize(X,‘range’);
- 每天一个数据分析题(五百零五)- 提升方法
跟着紫枫学姐学CDA
数据分析题库数据分析
提升方法(Boosting),是一种可以用来减小监督式学习中偏差的机器学习算法。基于Boosting的集成学习,其代表算法不包括?A.AdaboostB.GBDTC.XGBOOSTD.随机森林数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据
- 每天一个数据分析题(五百零六)- 装袋方法
跟着紫枫学姐学CDA
数据分析数据挖掘
装袋方法(bagging)也叫做bootstrapaggregating,是在原始数据集有放回地重采样S次后得到新数据集的一种技术,其代表算法有?A.AdaboostB.GBDTC.XGBOOSTD.随机森林数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专
- 随机森林(Random Forest)VS 提升树(Boosting Trees)
高大黑白涂鸦
随机森林boosting算法机器学习人工智能
随机森林(RandomForest)和提升树(BoostingTrees)都是常见的机器学习算法,它们都基于决策树,但使用的策略和目标不同。随机森林(RandomForest)通俗的类比:想象你有一个班级里的多位老师(决策树),你让他们每个人都独立地给出意见(预测)。每个老师的意见可能不完全一致,因为他们对问题的理解和方法不同。然后,你把所有老师的意见汇总,得到一个“班级意见”的结果。优点:减少过
- 每天一个数据分析题(二百二十)
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
在集成学习的GBDT算法中,每次训练新的决策树的目的是()?A.预测原始数据的标签B.预测上一个模型的残差C.降低模型的偏差D.降低模型的方差题目来源于CDA模拟题库点击此处获取答案
- 四十一、【人工智能】【机器学习】- Bayesian Logistic Regression算法模型
暴躁的大熊
人工智能人工智能机器学习算法
系列文章目录第一章【机器学习】初识机器学习第二章【机器学习】【监督学习】-逻辑回归算法(LogisticRegression)第三章【机器学习】【监督学习】-支持向量机(SVM)第四章【机器学习】【监督学习】-K-近邻算法(K-NN)第五章【机器学习】【监督学习】-决策树(DecisionTrees)第六章【机器学习】【监督学习】-梯度提升机(GradientBoostingMachine,GBM
- 【深度学习】吴恩达-课后作业-搭建多层神经网络以及应用
—Xi—
深度学习深度学习机器学习人工智能python神经网络
Ng的深度学习,其实前几个月就听完了,课后作业也是大懂不懂的都做了一遍,代码也跟着各种各样的参考敲了一遍,但暑假几个月没怎么学习。。。基本也忘得差不多了,这几周回顾了一下深度学习这门课的笔记,看了别的博主的总结,对CNN,RNN,LSTM,注意力机制等网络结构进行了复盘,虽然感觉自己很心浮气躁,一边也在学集成学习那几个算法和推荐系统相关,这里也告诉自己:贪多嚼不烂,心急吃不了热豆腐,慢慢来,还是要
- 周报 | 24.8.12-24.8.18文章汇总
双木的木
深度学习拓展阅读深度学习人工智能transformer算法pythonstablediffusionllama
为了更好地整理文章和发表接下来的文章,以后每周都汇总一份周报。周报|24.8.5-24.8.11文章汇总-CSDN博客OpenCV与AI深度学习|实战|使用YoloV8实例分割识别猪的姿态(含数据集)-CSDN博客极市平台|异常检测开源数据集汇总-CSDN博客程序员学长|快速学习一个算法,集成学习-CSDN博客Coggle数据科学|行业落地分享:大模型RAG汽车应用实践_rag中的意图识别-CSD
- 随机森林学习笔记概述
好好学习的不知名程序员
随机森林学习笔记
随机森林(RandomForest)是一种集成学习方法,它通过构建多个决策树并将它们的预测结果进行投票或平均来提高预测性能。随机森林在许多实际应用中表现出了很好的性能,尤其是在分类和回归问题上。以下是关于随机森林的一些学习笔记概述:1.基本概念集成学习:通过组合多个弱学习器来提高预测性能的方法。决策树:一种基本的分类和回归方法,通过递归地将数据集分割成不同的子集来构建树形结构。随机森林:由多个决策
- 基于R语言遥感随机森林建模与空间预测
weixin_贾
统计语言类模型分布式
随机森林作为一种集成学习方法,在处理复杂数据分析任务中特别是遥感数据分析中表现出色。通过构建大量的决策树并引入随机性,随机森林在降低模型方差和过拟合风险方面具有显著优势。在训练过程中,使用Bootstrap抽样生成不同的训练集,并在节点分裂时随机选择特征子集,这使得模型具备了处理高维和非线性数据的能力。随机森林对噪声和异常值具有鲁棒性,其预测结果通过对多棵树的集成投票或平均获得,减少了单个异常对结
- 随机森林原理&sklearn实现
一稻道人
机器学习算法&预测模型Python随机森林sklearn算法
原理定义随机森林就是通过集成学习的思想将多棵树集成的一种算法,它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习(EnsembleLearning)方法。随机森林的名称中有两个关键词,一个是“随机”,一个就是“森林”。随机森林应该是机器学习算法时最先接触到的集成算法,集成学习的家族:Bagging:个体评估器之间不存在强依赖关系,一系列个体学习器可以并行生成。代表算法:随机森林(R
- 【机器学习笔记】 9 集成学习
RIKI_1
机器学习机器学习笔记集成学习
集成学习方法概述Bagging从训练集中进行子抽样组成每个基模型所需要的子训练集,对所有基模型预测的结果进行综合产生最终的预测结果:假设一个班级每个人的成绩都不太好,每个人单独做的考卷分数都不高,但每个人都把自己会做的部分做了,把所有考卷综合起来得到成绩就会比一个人做的高Boosting训练过程为阶梯状,基模型按次序一一进行训练(实现上可以做到并行),基模型的训练集按照某种策略每次都进行一定的转化
- (十六)梯度提升树--回归和分类的算法(gbdt))
羽天驿
一、GBDT算法中有两个值,一个预测值,一个真实值,梯度提升树,减小残差,使梯度减小。梯度提升回归树,裂分条件是:MSE均方误差是真实值,预测值梯度提升回归树,划分指标mse算法示例mse.pngfor循环,计算所有的裂分方式的mse,找变化最大的,作为裂分条件!!!为什么变化最大,最好的裂分条件???因为,变化大,我们将相似的数据划归到相同的组中。梯度提升树--gradientBoostingD
- 常用的模型集成方法介绍:bagging、boosting 、stacking
weixin_30585437
人工智能c/c++数据结构与算法
本文介绍了集成学习的各种概念,并给出了一些必要的关键信息,以便读者能很好地理解和使用相关方法,并且能够在有需要的时候设计出合适的解决方案。本文将讨论一些众所周知的概念,如自助法、自助聚合(bagging)、随机森林、提升法(boosting)、堆叠法(stacking)以及许多其它的基础集成学习模型。为了使所有这些方法之间的联系尽可能清晰,我们将尝试在一个更广阔和逻辑性更强的框架中呈现它们,希望这
- R-CNN、Fast R-CNN、Faster R-CNN实现
今 晚 打 老 虎
面试之CV基础知识深度学习点滴
R-CNN:传统的目标检测算法:使用穷举法(不同大小比例的滑窗)进行区域选择,时间复杂度高对提取的区域进行特征提取(HOG或者SIFT),对光照、背景等鲁棒性差使用分类器对提取的特征进行分类(SVM或Adaboost)R-CNN的过程:采用SelectiveSearch生成类别独立的候选区域使用AlexNet来提取特征,输入是227*227*3,输出是4096将4096维的特征向量送入SVM来分类
- 【机器学习算法】KNN鸢尾花种类预测案例和特征预处理。全md文档笔记(已分享,附代码)
机器学习python算法
本系列文章md笔记(已分享)主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习,伴随浅显易懂的数学知识,让大家掌握机器学习常见算法原理,应用Scikit-learn实现机器学习算法的应用,结合场景解决实际问题。包括K-近邻算法,线性回归,逻辑回归,决策树算法,集成学习,聚类算法。K-近邻算法的距离公式,应用LinearRegression或SGDRegressor实现回归预
- 【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)
机器学习python算法
本系列文章md笔记(已分享)主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习,伴随浅显易懂的数学知识,让大家掌握机器学习常见算法原理,应用Scikit-learn实现机器学习算法的应用,结合场景解决实际问题。包括K-近邻算法,线性回归,逻辑回归,决策树算法,集成学习,聚类算法。K-近邻算法的距离公式,应用LinearRegression或SGDRegressor实现回归预
- 基于决策树的金融市场波动性预测与应用
OverlordDuke
机器学习决策树决策树算法机器学习
基于决策树的金融市场波动性预测与应用项目背景与意义数据概述与分析数据来源数据特征数据预处理与特征工程模型训练与评估结果与应用总结LightGBM是一个机器学习算法库,用于梯度提升机(GradientBoostingMachine)的实现。梯度提升机是一种集成学习方法,通过串行训练多个弱学习器(通常是决策树),每次学习的模型都试图纠正前一次模型的错误,从而逐步提升整体模型的性能。LightGBM算法
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =