(转载)数据库范式及宽表窄表理解

1、数据库设计的三大范式,转载地址:http://www.cnblogs.com/linjiqin/archive/2012/04/01/2428695.html


为了建立冗余较小、结构合理的数据库,设计数据库时必须遵循一定的规则。在关系型数据库中这种规则就称为范式。范式是符合某一种设计要求的总结。要想设计一个结构合理的关系型数据库,必须满足一定的范式。              

在实际开发中最为常见的设计范式有三个:

1.第一范式(确保每列保持原子性)

第一范式是最基本的范式。如果数据库表中的所有字段值都是不可分解的原子值,就说明该数据库表满足了第一范式。

第一范式的合理遵循需要根据系统的实际需求来定。比如某些数据库系统中需要用到“地址”这个属性,本来直接将“地址”属性设计成一个数据库表的字段就行。但是如果系统经常会访问“地址”属性中的“城市”部分,那么就非要将“地址”这个属性重新拆分为省份、城市、详细地址等多个部分进行存储,这样在对地址中某一部分操作的时候将非常方便。这样设计才算满足了数据库的第一范式,如下表所示。

(转载)数据库范式及宽表窄表理解_第1张图片

上表所示的用户信息遵循了第一范式的要求,这样在对用户使用城市进行分类的时候就非常方便,也提高了数据库的性能。

                

2.第二范式(确保表中的每列都和主键相关)

第二范式在第一范式的基础之上更进一层。第二范式需要确保数据库表中的每一列都和主键相关,而不能只与主键的某一部分相关(主要针对联合主键而言)。也就是说在一个数据库表中,一个表中只能保存一种数据,不可以把多种数据保存在同一张数据库表中。

比如要设计一个订单信息表,因为订单中可能会有多种商品,所以要将订单编号和商品编号作为数据库表的联合主键,如下表所示。

 订单信息表

(转载)数据库范式及宽表窄表理解_第2张图片

这样就产生一个问题:这个表中是以订单编号和商品编号作为联合主键。这样在该表中商品名称、单位、商品价格等信息不与该表的主键相关,而仅仅是与商品编号相关。所以在这里违反了第二范式的设计原则。

而如果把这个订单信息表进行拆分,把商品信息分离到另一个表中,把订单项目表也分离到另一个表中,就非常完美了。如下所示。

(转载)数据库范式及宽表窄表理解_第3张图片

这样设计,在很大程度上减小了数据库的冗余。如果要获取订单的商品信息,使用商品编号到商品信息表中查询即可。

                 

3.第三范式(确保每列都和主键列直接相关,而不是间接相关)

第三范式需要确保数据表中的每一列数据都和主键直接相关,而不能间接相关

比如在设计一个订单数据表的时候,可以将客户编号作为一个外键和订单表建立相应的关系。而不可以在订单表中添加关于客户其它信息(比如姓名、所属公司等)的字段。如下面这两个表所示的设计就是一个满足第三范式的数据库表。

(转载)数据库范式及宽表窄表理解_第4张图片

这样在查询订单信息的时候,就可以使用客户编号来引用客户信息表中的记录,也不必在订单信息表中多次输入客户信息的内容,减小了数据冗余。


2、宽表窄表理解,转载地址:http://www.cnblogs.com/super-d2/p/3384938.html


宽表和窄表的建设该如何选择?

这个问题相信纠结了很多从是数据库开发、数据仓库开发和后台开发人员;单单考虑这个问题,难给出一个绝对的答案;本人从事数据仓库开发工作到现在已经有一年半时间了,对于这个问题,我也曾经纠结过,但是是否有绝对的答案呢?事实上任何东西都没有绝对的说法。

考虑这样的一个问题,一个公司有这样的一个需求:

设计销售领域的订单事实表,该事实表应该包含哪些维度和度量?事实表和维表该分别如何去设计?

好了,我们把关键信息拿出来,首先我们要有维度包括:销售员、销售员所属部门、下订单的时间;度量:销售量;

那么,订单事实表,其实就是一个商品销售的清单;

依照这个思路,我们建立的第一个模型可能是以下这样的:

(转载)数据库范式及宽表窄表理解_第5张图片

单单看上去,貌似是符合我们的问题的需要,而且符合数据库的范式设计:没有冗余字段;但是情况真的就是这样吗?

答案是否定的,确实对于一般的OLTP系统而言这样的表设计确实减少了冗余和,增删改查等操作也很方便,但是往往对于我们的统计系统、OLAP、数据挖掘而言,情况却并非如此,举个例子:我们要统计每个部门各自的销售量为多少?那么对于上表,sql是这样的:

select a.*,b.sid into #dep_saleser from department a,saleser_dim b on a.dep_id = b.dep_id;

select count(1),a.dep_name from #dep_saleser a,order_fact b on a.sid=b.sid group by a.dep_name;

对于这么一个简单的需求已经要写两了sql去实现了,其实数据库表模型的的设计是灵活的,我们完全可以根据我们的业务去设计我们的数据表;考虑到部门和销售员可以是同属于销售者这个维度,只是他们是有上下级别关系的那么依照这个思路,我们的模型可以建立为下面这样:

(转载)数据库范式及宽表窄表理解_第6张图片

那么统计每个部门各自的销售量,可以用如下sql去实现:

select count(1),a.dep_name from saleser_dim a,order_fact b

on a.sid=b.sid group by a.dep_name;

确实对于这个模型而言,有些情况下会出现冗余(填写用户,没有填写部门;填写部门没填写用户);但是对于提取数统计的逻辑又相对来说要简单了好多;

考虑到要实现取数简单,我们还可以想出另外一种方法:

(转载)数据库范式及宽表窄表理解_第7张图片

  看上去好像不错哦~~,取数据也就一句sql就搞掂了,但是却是最最槽糕的情况,有可能一个销售员,前几天登记的部门是a,但是其实他的所属于的部门为b,那么对于上面这个模型,我们得改动销售员和订单表;而对于上面的其他两个模型都仅仅需要改动一张表就行了,造成查询数据部一致往往也就是这种数据模型所造成的。

    所谓的宽表就是字段比较多的表,包含的维度层次比较多,造成冗余也比较多,毁范式设计,但是利于取数统计,而窄表往往对于OLTP比较合适,符合范式设计原则;


3、从这两篇文章的说明,个人理解为宽表还是倾向于破坏第二范式,而实际上冗余既取决于设计,也取决于实际数据的管理。



你可能感兴趣的:((转载)数据库范式及宽表窄表理解)