2 3 51 52 51 4 51 52 52 51
3 4
首先求出每一个数向左递减向右递减的最远位置l[i]和r[i],这个可以通过一遍递推
得到.
然后跑一次manachar求出这个序列每一个位置的最长回文,然后最佳队形的半径
就是min (最长回文半径,l[i]到i的距离,r[i]到i的距离),这里需要讨论一下这个最长回
文在原串中的奇偶性.
#include <bits/stdc++.h> using namespace std; #define maxn 211111 int a[maxn]; int len[maxn]; int n; int L[maxn], R[maxn];//每个数字向左向右最多到哪里(单调递减) void solve (int *a, int n) { L[0] = 0; for (int i = 1; i < n; i++) { if (a[i] >= a[i-1]) L[i] = L[i-1]; else L[i] = i; } R[n-1] = n-1; for (int i = n-2; i >= 0; i--) { if (a[i] >= a[i+1]) R[i] = R[i+1]; else R[i] = i; } return ; } int manachar (int *p) { int s[maxn<<1];//构造新串 int l = 0; s[l++] = -1; s[l++] = 0; for (int i = 0; i < n; i++) { s[l++] = p[i]; s[l++] = 0; } s[l++] = -2; int Max = 0, pos = 0; for (int i = 1; i < l; i++) { if (Max > i) { len[i] = min (len[2*pos-i], Max-i); } else len[i] = 1; while (s[i+len[i]] == s[i-len[i]]) len[i]++; if (len[i]+i > Max) { Max = len[i]+i; pos = i; } } solve (a, n); int ans = 0; for (int i = 2; i < l-1; i++) { int id = (i-1)/2; if (s[i] == 0) { int Min = min (id-L[id], R[id]-id+1); ans = max (ans, min (len[i]-1, Min*2)); } else { int Min = min (id-L[id]+1, R[id]-id+1); ans = max (ans, min (Min*2-1, len[i]-1)); } } printf ("%d\n", ans); return 0; } int main () { //freopen ("in.txt", "r", stdin); int t; scanf ("%d", &t); while (t--) { scanf ("%d", &n); for (int i = 0; i < n; i++) scanf ("%d", &a[i]); manachar (a); } return 0; }