/* *Copyright (c) 2015 , 烟台大学计算机学院 *All right resvered . *文件名称: 广度优先遍历BFS.cpp *作 者: 郑兆涵 *图——图的遍历—— 广度优先遍历BFS */
问题:实现图遍历算法,输出广度优先遍历BFS
以下图为例:
编程代码:
//头文件:graph.h,包含定义图数据结构的代码、宏定义、要实现算法的函数的声明 #ifndef GRAPH_H_INCLUDED #define GRAPH_H_INCLUDED #define MAXV 100 //最大顶点个数 #define INF 32767 //INF表示∞ typedef int InfoType; //以下定义邻接矩阵类型 typedef struct { int no; //顶点编号 InfoType info; //顶点其他信息,在此存放带权图权值 } VertexType; //顶点类型 typedef struct //图的定义 { int edges[MAXV][MAXV]; //邻接矩阵 int n,e; //顶点数,弧数 VertexType vexs[MAXV]; //存放顶点信息 } MGraph; //图的邻接矩阵类型 //以下定义邻接表类型 typedef struct ANode //弧的结点结构类型 { int adjvex; //该弧的终点位置 struct ANode *nextarc; //指向下一条弧的指针 InfoType info; //该弧的相关信息,这里用于存放权值 } ArcNode; typedef int Vertex; typedef struct Vnode //邻接表头结点的类型 { Vertex data; //顶点信息 int count; //存放顶点入度,只在拓扑排序中用 ArcNode *firstarc; //指向第一条弧 } VNode; typedef VNode AdjList[MAXV]; //AdjList是邻接表类型 typedef struct { AdjList adjlist; //邻接表 int n,e; //图中顶点数n和边数e } ALGraph; //图的邻接表类型 //功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图 //参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针) // n - 矩阵的阶数 // g - 要构造出来的邻接矩阵数据结构 void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵 void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表 void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g void DispMat(MGraph g);//输出邻接矩阵g void DispAdj(ALGraph *G);//输出邻接表G #endif // GRAPH_H_INCLUDED //源文件:graph.cpp,包含实现各种算法的函数的定义 #include <stdio.h> #include <malloc.h> #include "graph.h" //功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图 //参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针) // n - 矩阵的阶数 // g - 要构造出来的邻接矩阵数据结构 void ArrayToMat(int *Arr, int n, MGraph &g) { int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数 g.n=n; for (i=0; i<g.n; i++) for (j=0; j<g.n; j++) { g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用 if(g.edges[i][j]!=0) count++; } g.e=count; } void ArrayToList(int *Arr, int n, ALGraph *&G) { int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数 ArcNode *p; G=(ALGraph *)malloc(sizeof(ALGraph)); G->n=n; for (i=0; i<n; i++) //给邻接表中所有头节点的指针域置初值 G->adjlist[i].firstarc=NULL; for (i=0; i<n; i++) //检查邻接矩阵中每个元素 for (j=n-1; j>=0; j--) if (Arr[i*n+j]!=0) //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j] { p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p p->adjvex=j; p->info=Arr[i*n+j]; p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p G->adjlist[i].firstarc=p; } G->e=count; } void MatToList(MGraph g, ALGraph *&G) //将邻接矩阵g转换成邻接表G { int i,j; ArcNode *p; G=(ALGraph *)malloc(sizeof(ALGraph)); for (i=0; i<g.n; i++) //给邻接表中所有头节点的指针域置初值 G->adjlist[i].firstarc=NULL; for (i=0; i<g.n; i++) //检查邻接矩阵中每个元素 for (j=g.n-1; j>=0; j--) if (g.edges[i][j]!=0) //存在一条边 { p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p p->adjvex=j; p->info=g.edges[i][j]; p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p G->adjlist[i].firstarc=p; } G->n=g.n; G->e=g.e; } void ListToMat(ALGraph *G,MGraph &g) //将邻接表G转换成邻接矩阵g { int i,j; ArcNode *p; g.n=G->n; //根据一楼同学“举报”改的。g.n未赋值,下面的初始化不起作用 g.e=G->e; for (i=0; i<g.n; i++) //先初始化邻接矩阵 for (j=0; j<g.n; j++) g.edges[i][j]=0; for (i=0; i<G->n; i++) //根据邻接表,为邻接矩阵赋值 { p=G->adjlist[i].firstarc; while (p!=NULL) { g.edges[i][p->adjvex]=p->info; p=p->nextarc; } } } void DispMat(MGraph g) //输出邻接矩阵g { int i,j; for (i=0; i<g.n; i++) { for (j=0; j<g.n; j++) if (g.edges[i][j]==INF) printf("%3s","∞"); else printf("%3d",g.edges[i][j]); printf("\n"); } } void DispAdj(ALGraph *G) //输出邻接表G { int i; ArcNode *p; for (i=0; i<G->n; i++) { p=G->adjlist[i].firstarc; printf("%3d: ",i); while (p!=NULL) { printf("-->%d/%d ",p->adjvex,p->info); p=p->nextarc; } printf("\n"); } } //编制main函数,完成相关的测试工作。 #include <stdio.h> #include <malloc.h> #include "graph.h" void BFS(ALGraph *G, int v) { ArcNode *p; int w,i; int queue[MAXV],front=0,rear=0; //定义循环队列 int visited[MAXV]; //定义存放节点的访问标志的数组 for (i=0; i<G->n; i++) visited[i]=0; //访问标志数组初始化 printf("%2d",v); //输出被访问顶点的编号 visited[v]=1; //置已访问标记 rear=(rear+1)%MAXV; queue[rear]=v; //v进队 while (front!=rear) //若队列不空时循环 { front=(front+1)%MAXV; w=queue[front]; //出队并赋给w p=G->adjlist[w].firstarc; //找w的第一个的邻接点 while (p!=NULL) { if (visited[p->adjvex]==0) { printf("%2d",p->adjvex); //访问之 visited[p->adjvex]=1; rear=(rear+1)%MAXV; //该顶点进队 queue[rear]=p->adjvex; } p=p->nextarc; //找下一个邻接顶点 } } printf("\n"); } int main() { ALGraph *G; int A[5][5]= { {0,1,0,1,0}, {1,0,1,0,0}, {0,1,0,1,1}, {1,0,1,0,1}, {0,0,1,1,0} }; ArrayToList(A[0], 5, G); printf(" 由2开始广度遍历:"); BFS(G, 2); printf(" 由0开始广度遍历:"); BFS(G, 0); return 0;
输出结果:
学习心得:
对于广度优先遍历BFS首先是清楚BFS的算法过程:
(1)首先访问初始点a
(2)接着访问a的所有未被访问过的邻接点a1,a2,a3,……,an;按照a1,a2,a3,……,an的次序,访问每一个顶点的所有未被访问过的邻接点。
(3)直到图中所有和初始点a有路径相通的顶点都被访问过为止。
例如:
① 0 → 1 → 3 → 4 → 2
② 2 → 1 → 3 → 4 → 0
对于以上的例子(以0 → 1 → 3 → 4 → 2为例)
先访问顶点0,再访问与0相通的所有顶点,并按一定的顺序访问,也就是由上到下或者由左到右的顺序进行访问即:0 → 1 → 3 → 4,当访问完4之后,再由0所访问的第一个顶点开始,继续向下一个顶点访问,也就是与1相通的2.即最终结果:0 → 1 → 3 → 4 → 2。这其中所用到的是先进先出的队列的思想。
对于BFS实现:
在遍历的时候,图的起始点是v,此时需要设置一个队列,int queue[MAXV],这是一个环形队列,将环形队列的队头和队尾都都设置成0,即front=0,rear=0.
在进行访问之前,需要定义一个存放节点的访问标志的数组visited[MAXV]数组,首先哟将visit[]数组全置0.
printf("%2d",v); //输出被访问顶点的编号
visited[v]=1; //置已访问标记
rear=(rear+1)%MAXV;
queue[rear]=v; //v进队
访问第一个顶点并入队,进行遍历,访问顶点v,并将visited[v]赋值为1,若以起始顶点为2做例,则,入队时,根据环形队列的入队,先要调节环形队列的位置针,将visited[]原先的0,变为1,并将环形队列queue[]中的1的位置赋值为2.则原先的queue[]环形队列的头节点为[0]尾节点为[1]
while (p!=NULL)
{
if (visited[p->adjvex]==0)
{
printf("%2d",p->adjvex); //访问之
visited[p->adjvex]=1;
rear=(rear+1)%MAXV; //该顶点进队
queue[rear]=p->adjvex;
}
p=p->nextarc; //找下一个邻接顶点
}
接下来需要判断,当队尾不为空的时候,需要取出队中顶点,访问未访问的邻接点并使之入队,则需要将queue[1]中的2取出,再将队头front指向queue[1]的位置,当2出队之后,发现2的邻接点为1.3.4,并分别对1.3.4进行访问,因此在visited[]数组中,依次将1.3.4由0变为1,并且对环形队列queue[]的[2].[3].[4]号位置,分别进入1.3.4,当队伍不空的时候,继续取出节点.接下来就是从[2]号位取出1.再进行1的邻接点的访问.依次下去即可得到最终的BFS广度遍历的结果.