1. 欧氏距离(Euclidean Distance)
欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。
(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:
(2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:
(3)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离:
也可以用表示成向量运算的形式:
(4)Matlab计算欧氏距离
Matlab计算距离主要使用pdist函数。若X是一个M×N的矩阵,则pdist(X)将X矩阵M行的每一行作为一个N维向量,然后计算这M个向量两两间的距离。
例子:计算向量(0,0)、(1,0)、(0,2)两两间的欧式距离
X = [0 0 ; 1 0 ; 0 2]
D = pdist(X,'euclidean')
结果:
D =
1.0000 2.0000 2.2361
2. 曼哈顿距离(Manhattan Distance)
从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源, 曼哈顿距离也称为城市街区距离(City Block distance)。
(1)二维平面两点a(x1,y1)与b(x2,y2)间的曼哈顿距离
(2)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的曼哈顿距离
(3) Matlab计算曼哈顿距离
例子:计算向量(0,0)、(1,0)、(0,2)两两间的曼哈顿距离
X = [0 0 ; 1 0 ; 0 2]
D = pdist(X, 'cityblock')
结果:
D =
1 2 3
3. 标准化欧氏距离(Standardized Euclidean distance )
(1)标准欧氏距离的定义
标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。标准欧氏距离的思路:既然数据各维分量的分布不一样,好吧!那我先将各个分量都“标准化”到均值、方差相等吧。均值和方差标准化到多少呢?这里先复习点统计学知识吧,假设样本集X的均值(mean)为m,标准差(standard deviation)为s,那么X的“标准化变量”表示为:
而且标准化变量的数学期望为0,方差为1。因此样本集的标准化过程(standardization)用公式描述就是:
标准化后的值 = ( 标准化前的值 - 分量的均值 ) /分量的标准差
经过简单的推导就可以得到两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的标准化欧氏距离的公式:
如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(Weighted Euclidean distance)。
(2)Matlab计算标准化欧氏距离
例子:计算向量(0,0)、(1,0)、(0,2)两两间的标准化欧氏距离 (假设两个分量的标准差分别为0.5和1)
X = [0 0 ; 1 0 ; 0 2]
D = pdist(X, 'seuclidean',[0.5,1])
结果:
D =
2.0000 2.0000 2.8284
4. 夹角余弦(Cosine)
有没有搞错,又不是学几何,怎么扯到夹角余弦了?各位看官稍安勿躁。几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。
(1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:
(2) 两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦
类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。
即:
夹角余弦取值范围为[-1,1]。夹角余弦越大表示两个向量的夹角越小,夹角余弦越小表示两向量的夹角越大。当两个向量的方向重合时夹角余弦取最大值1,当两个向量的方向完全相反夹角余弦取最小值-1。
夹角余弦的具体应用可以参阅参考文献[1]。
(3)Matlab计算夹角余弦
例子:计算(1,0)、( 1,1.732)、( -1,0)两两间的夹角余弦
X = [1 0 ; 1 1.732 ; -1 0]
D = 1- pdist(X, 'cosine') % Matlab中的pdist(X, 'cosine')得到的是1减夹角余弦的值
结果:
D = 0.5000 -1.0000 -0.5000
本文转自:百度文库http://wenku.baidu.com/view/ebde5d0e763231126edb1113.html